Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.
Answer:
a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Explanation:
The center of mass of a system of particles (
), measured in meters, is defined by this weighted average:
(1)
Where:
- Mass of the i-th particle, measured in kilograms.
- Location of the i-th particle with respect to origin, measured in meters.
If we know that
,
,
,
,
and
, then the coordinates of the third particle are:




a) The x coordinate of the third mass is -1.562 meters.
b) The y coordinate of the third mass is -0.944 meters.
Answer:
4,200 joules per kilogram per degree Celsius
Explanation:
The specific heat capacity of a material is the energy required to raise one kilogram (kg) of the material by one degree Celsius (°C). The specific heat capacity of water is 4,200 joules per kilogram per degree Celsius (J/kg°C). This means that it takes 4,200 J to raise the temperature of 1 kg of water by 1°C.