Triprotic acid is a class of Arrhenius acids that are capable of donating three protons per molecule when dissociating in aqueous solutions. So the chemical reaction as described in the question, at the third equivalence point, can be show as: H3R + 3NaOH ⇒ Na3R + 3H2O, where R is the counter ion of the triprotic acid. Therefore, the ratio between the reacted acid and base at the third equivalence point is 1:3.
The moles of NaOH is 0.106M*0.0352L = 0.003731 mole. So the moles of H3R is 0.003731mole/3=0.001244mole.
The molar mass of the acid can be calculated: 0.307g/0.001244mole=247 g/mol.
What are you making a hypothesis for
Answer:
The answer to this question is the A choice. A rocket before launch.
Explanation:
In the definition of kinetic energy, it says: In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Here is an acid-base reaction. Hydrochloric acid (HCl) reacts with strontium hydroxide [ Sr(OH)2 ]
Ions H+ and OH- neutralize each other. If the amounts are not equal, one of them will be in excess.
Follow the steps as
1. Find moles of ions: mole= Molarity * Volume (in liter) ; n= M * V OR millimole = Molarity * Volume (in ml) ;
2. Write the equation
3. Find out excess ion
4. Use final volume (V acid + V base ) to calculate concentration of excess ion.
n HCI = 28 ml * 0.10 M = 0.28 mmol, releases 0.28 mmol H+ ions
n Sr(OH)2= 60 ml * 0.10 M= 0.60 mmol, releases 2* 0.60=1.20 mmol OH- ions
since Sr(OH)2⇒ Sr2+ + 2OH-
Neutralization reaction is OH- + H+ ---> H2O. The ratio is 1:1. That means 1 mmol hydroxide ions will neutralize 1 mmol hydrogen ions. Since OH- ions are greater in amount, they will be in excess
n(OH-) - n(H+)= 1.20 - 0.28 = 0.92 mmol OH- ions UNREACTED.
Total volume= V acid + V base= 28 ml + 60 ml = 98 ml
Molarity of OH- ions= mole / Vtotal = 0.92/98= 0.009 M
The answer is 0.009 M.
H2S hydrogen sulfide gas has a higher lattice energy because
Formula: H2S
Molar mass: 34.1 g/mol
Boiling point: -76°F (-60°C)
Melting point: -115.6°F (-82°C)
Density: 1.36 kg/m³
Soluble in: Water, Alcohol