I'll go with B, have a good day
Answer:
0.628 M.
Explanation:
In order to solve this problem we need to keep in mind the<em> definition of molarity</em>:
- Molarity = moles / liters
We are given both the <em>number of moles and the volume of solution</em>, meaning we can now proceed to <u>calculate the molarity</u>:
- Molarity = 0.220 mol / 0.350 L
<u>Given:</u>
Initial amount of carbon, A₀ = 16 g
Decay model = 16exp(-0.000121t)
t = 90769076 years
<u>To determine:</u>
the amount of C-14 after 90769076 years
<u>Explanation:</u>
The radioactive decay model can be expressed as:
A = A₀exp(-kt)
where A = concentration of the radioactive species after time t
A₀ = initial concentration
k = decay constant
Based on the given data :
A = 16 * exp(-0.000121*90769076) = 16(0) = 0
Ans: Based on the decay model there will be no C-14 left after 90769076 years
Answer:
These reactions are similar because the process is similar and the products are carbon dioxide they are different because the substances are different to outgo these reactions
Explanation:
Answer:
3.46x10⁴
Explanation:
Hello,
In this case, we can see that the number 34,560 has five significant figures, it means that if we want to write it with three, we must take the 3, 4 and 5 only. Nevertheless, since the 6 after the five is greater than 5, we can round such five to 6, so we obtain:
346
However, the decimal places cannot get lost, therefore, we move the given thousand to the three, so the number turns out:
3.46x10⁴
Best regards.