Answer:
The zeros of f(x) are: (x - 1), (x - 3) and (x - 8)
<em></em>
Step-by-step explanation:
Given


Required
Find all zeros of the f(x)
If
then:

And
is a factor
Divide f(x) by x - 8

Expand the numerator

Rewrite as:

Factorize

Expand

Factorize


Multiply both sides by x - 8

<em>Hence, the zeros of f(x) are: (x - 1), (x - 3) and (x - 8)</em>
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Answer: X=9
x^2 −2(x) (9)+9^2 =0
(X-9)^2=0
X-9=0
X=9
Answer:
It's the one on the bottom left
Step-by-step explanation: