Answer: C Plane
Explanation: According to Newton's law, gravitational force is proportional to the product of masses and inversely proportional to the square of distance between them.
Gravitational force depends on mass. The bigger the mass, the more the magnitude of the gravitational force. Since plane is assume to have the highest mass in the options, we can therefore conclude that plane will experience the highest gravitational force.
Answer: Two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg. If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN
Explanation: To find the answer we need to know more about the Newton's law of gravitation.
<h3>What is Newton's law of gravitation?</h3>
- Gravitation is the force of attraction between any two bodies.
- Every body in the universe attracts every other body with a force.
- This force is directly proportional to the product of their masses and inversely proportional to the square of the distance between these two masses.
- Mathematically we can expressed it as,

<h3>How to solve the problem?</h3>
- Here, we have given with the data's,

- Thus, the force of attraction between these two bodies will be,

Thus, if two celestial objects are in space: one with a mass of 8.22 x 109 kg and one with a mass of 1.38 x 108 kg and, If they are separated by a distance of 1.43 km, then, the magnitude of the force of attraction (in newtons) between the objects will be 52.9kN.
Learn more about the Newton's law of gravitation here:
brainly.com/question/28045318
#SPJ4
The current is defined as the amount of charge transferred through a certain point in a certain time interval:

where
I is the current
Q is the charge

is the time interval
For the lightning bolt in our problem, Q=6.0 C and

, so the average current during the event is
Answer:
no.
Explanation:
because the mass of an object never changes.
Speed is the rate of distance traveled per unit of time without regards to direction.
<u>Explanation</u>:
Speed is the pace of separation traveled per unit of time, regardless of direction.
Speed is straightforwardly relative to separate when time is consistent and conversely corresponding to a time when separation is steady. Multiplying one's speed would mean multiplying one's separation went in a given measure of time. Multiplying one's speed would likewise mean splitting the time required to travel a given separation.