Answer: 539.4 N
Explanation:
Let's begin by explaining that Coulomb's Law establishes the following:
"The electrostatic force
between two point charges
and
is proportional to the product of the charges and inversely proportional to the square of the distance
that separates them, and has the direction of the line that joins them"
What is written above is expressed mathematically as follows:
(1)
Where:
is the electrostatic force
is the Coulomb's constant
and
are the electric charges
is the separation distance between the charges
Then:
(2)
Isolating
and
:
(3)
Now, if we keep the same charges but we decrease the distance to
, (1) is rewritten as:
(4)
Then, the new electrostatic force will be:
(5) As we can see, the electrostatic force is increased when we decrease the distance between the charges.
Answer:
because it’s suppose to be red like a stop light.
Explanation:
So it tells you to stop
<span>.87 m/s^2 ,hope this helps!!!!!!</span>
Answer:
High winds, hail, excessive precipitation, and wildfires are forms and effects of severe weather, as are thunderstorms, downbursts, tornadoes, waterspouts, tropical cyclones, and extratropical cyclones. Regional and seasonal severe weather phenomena include blizzards (snowstorms), ice storms, and duststorms.
Explanation:High winds- wind speeds as low as 23 knots (43 km/h) may lead to power outages when tree branches fall and disrupt power lines. Once wind exceed 135 knots (250 km/h) within strong tropical cyclones and tornadoes, homes completely collapse, and significant damage is done to larger buildings. Total disruption occurs once wind exceeds 175 knots (324 km/h)
Tornado- Typically look like a narrow funnel reaching from the clouds to the ground. Their wind speed goes from 65 to 250 miles per hour.
"An extreme weather condition in which we face the high speed wind in combination with heavy snow."
As for any blizzard has the normal wind speed of about 40 mph, and the visibility range reduces to less then 500 ft.
Answer:
a) 
b) 
Explanation:
From the exercise we know that



From dynamics we know that the formula for average velocity is:

a) For the three intervals:



b) The average velocity for the entire motion can be calculate by the following formula:
