<u>Answer:</u> The final temperature of the mixture is 51.49°C
<u>Explanation:</u>
When two samples of water are mixed, the heat released by the water at high temperature will be equal to the amount of heat absorbed by water at low temperature

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of water at high temperature = 140 g (Density of water = 1.00 g/mL)
= mass of water at low temperature = 230 g
= final temperature = ?°C
= initial temperature of water at high temperature = 95.00°C
= initial temperature of water at low temperature = 25.00°C
c = specific heat of water= 4.186 J/g°C
Putting values in equation 1, we get:
![140\times 4.186\times (T_{final}-95)=-[230\times 4.186\times (T_{final}-25)]](https://tex.z-dn.net/?f=140%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-95%29%3D-%5B230%5Ctimes%204.186%5Ctimes%20%28T_%7Bfinal%7D-25%29%5D)

Hence, the final temperature of the mixture is 51.49°C
Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184

- m= 32 g
- ΔT= Tfinal - Tinitial= 22°C - 8°C= 14°C
Replacing:
Q= 32 g* 4.184
*14 °C
Solving:
Q= 1,874.432 J
<u><em>The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J</em></u>
Nitrogen gas consists of a diatomic nitrogen atom. So, the correct answer is B.
A, It encourages scientists to give convincing evidence for ther results.