Answer: i beleive it is fixation in edge 2020
Explanation:
Answer:
C. Earth's revolution around the sun
Explanation:
Answer:
Thus, the order of the reaction is 2.
The rate constant of the graph which is :- 2.00 M⁻¹s⁻¹
Explanation:
The kinetics of a reaction can be known graphically by plotting the concentration vs time experimental data on a sheet of graph.
The concentration vs time graph of zero order reactions is linear with negative slope.
The concentration vs time graph for a first order reactions is a exponential curve. For first order kinetics the graph between the natural logarithm of the concentration vs time comes out to be a straight graph with negative slope.
The concentration vs time graph for a second order reaction is a hyberbolic curve. Also, for second order kinetics the graph between the reciprocal of the concentration vs time comes out to be a straight graph with positive slope.
Considering the question,
A plot of 1/[NOBr] vs time give a straight line with a slope of 2.00 M⁻¹s⁻¹.
<u>Thus, the order of the reaction is 2.</u>
<u>Also, slope is the rate constant of the graph which is :- 2.00 M⁻¹s⁻¹</u>
Answer:
emissions by factories is the answer
Explanation:
Factories produce air pollution which is polluted air, the other options
decay of organisms, photosynthesis (convert light energy into chemical energy - and returns CO2), and cellular respiration are all of the ways carbon dioxide returns to the atmosphere.
Hope this helped! Have a nice day, be safe and healthy :)
Answer:
100.5 ≈ 101
Explanation:
Km for S1 = 2.0 mM
Km for S2 = 20 mM
Given that : S1 = S2 = hence Vmax for either S1 or S2 can represent
The Vmax can be calculated using the data Given and equation below
Vo = Vmax [s] / ( Km + [s] ) ------ (1)
Vo = 0.5
[s] = 0.1 mM
km = 20 mM
making Vmax subject of equation 1
Vmax = 0.5 ( 20.1 mM) / (0.1 mM )
= 100.5 ≈ 101