Answer:
see explanation below
Explanation:
You are missing the reaction scheme, but in picture 1, I found a question very similar to this, and after look into some other pages, I found the same scheme reaction, so I'm gonna work on this one, to show you how to solve it. Hopefully it will be the one you are asking.
According to the reaction scheme, in the first step we have NaNH2/NH3(l). This reactant is used to substract the most acidic hydrogen in the alkine there. In this case, it will substract the hydrogen from the carbon in the triple bond leaving something like this:
R: cyclopentane
R - C ≡ C (-)
Now, in the second step, this new product will experiment a SN2 reaction, and will attack to the CH3 - I forming another alkine as follow:
R - C ≡ C - CH3
Finally in the last step, Na in NH3 are reactants to promvove the hydrogenation of alkines. In this case, it will undergo hydrogenation in the triple bond and will form an alkene:
R - CH = CH - CH3
In picture 2, you have the reaction and mechanism.
Answer:
Yes the two of the answer is True
Answer:
Aluminium is ordinarily classified as a metal. It is lustrous, malleable and ductile, and has high electrical and thermal conductivity. Like most metals, it has a close-packed crystalline structure and forms a cation in an aqueous solution.
Well, a compound has a total charge of 0. So, it's electrically neutral. Since the X is 3+ and the Y is 3- they add to 0. Meaning no subscripts are necessary. Why don't you try a different combo?
Like:
A^3 and B^1-, to get a 3- charge you need 3xB^1- so the formula is AB3
Does this help?