<span>These values also increase from the
bottom to the top of a group because the size of the atom decreases, resulting
in a smaller distance between the nucleus and the valence electron shell, which
increases the attraction between the protons and electrons.</span>
Answer:
The concentration of the solution is 1.364 molar.
Explanation:
Volume of perchloric acid = 29.1 mL
Mass of the solution = m
Density of the solution = 1.67 g/mL

Percentage of perchloric acid in 48.597 solution :70.5 %
Mass of perchloric acid in 48.597 solution :
= 
Moles of perchloric acid = 
In 29.1 mL of solution water is added and volume was changed to 250 mL.
So, volume of the final solution = 250 mL = 0.250 L (1 mL = 0.001 L)


The concentration of the solution is 1.364 molar.
Answer is: 5,75·10⁻¹.
Kf = 2,3·10⁶ 1/s.
K = 4,0·10⁸ 1/s.
Kr = ?
Kf - <span>forward rate constant.
K - </span><span>equilibrium constant.
Kr - </span><span>reverse rate constant.
</span>Since both Kf and Kr are constants at a given temperature, their ratio is also a constant that
is equal to the equilibrium constant K.<span>
K = Kf/Kr.
Kr = Kf/K = </span>2,3·10⁶ 1/s ÷ 4,0·10⁸ 1/s = 5,75·10⁻¹.
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.