Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
The balanced chemical equation for the standard formation reaction of liquid acetic acid is given as ,
→ 
The reaction that form the products from their elements in their standard state is called formation of reaction .The acetic acid consist C , H , and O , So, determine their standard state . Carbon is graphite at 25°C and 1 atm , whereas hydrogen and oxygen are diatomic gases . Hence , we start with unbalanced reaction.
→ 
The balanced chemical equation for the standard formation reaction of liquid acetic acid as,
→ 
The combustion of liquid acetic acid is given as,
→
ΔH =-873
learn more about balancing chemical equation
brainly.com/question/15052184
#SPJ4
Answer:
It is because water molecules in the air condensed on to the container of the drink.
Explanation:
The way this works is the water molecules outside are hot and in the gas state, so when they come into contact with the cold side of the container they lose energy due to heat transfer between the molecules and the container, becoming a liquid on the side of the drink.