Answer:

Explanation:
= Initial pressure = 931 torr = 
= Final pressure = 113 kPa
= Initial volume = 350 mL
= Final volume
From the Boyle's law we have

The volume the gas would occupy is
.
The molarity is moles/liters.
First, convert 4,000 mL to L:
4000 mL --> 4 L
Now, you must convert the 17 g of solute to moles by dividing the number of grams by the molar mass. The molar mass of AgNO3 is <span>169.87 g/mol:
17 / 169.87 = .1
Now that you have both the number of moles and the liters, plug them into the initial equation of moles/liters:
.1/4 = .025</span>
Answer:
8. the answer is B.
9. the answer is A.
Explanation:
Hello!
8. In this case, by bearing to mind that the limiting reactant is always completely consumed and the excess one remain as a leftover at the end of the reaction, we can also infer that as all the limiting reactant is consumed, it must determine the maximum amount of product as the excess reactant will hypothetically produce a greater mass than expected; thus, the answer to this question is B.
9. In this case, since the mole ratio of oxygen to water is 1:2, the following proportional factor is used to calculate the produced mass of water:

Thus, the answer is this case is A.
Best regards!
Ideal gas law:
PV=nRT ⇒ V=nRT / P
P=pressure=1 atm
V=volume
n=number moles=2.10 moles
R=0,082 Atm l/ºK mol
T=temperature=273 K
V=(2.10 moles*0.082 (atm l)/º(K mol)*237ºK) / 1 atm=47.01 litres
47.1 L
Answer:
c = 0.0432moldm ^−3
Explanation:
The first step would be to find the molar ratio in the reaction. Now generally, one can simplify strong acid-strong base reaction by saying:
Acid+Base ->Salt+ Water