Answer:
b. 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Rewrite function [Exponential Rule - Root Rewrite]:
![\displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%28x%29%20%3D%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D)
- Chain Rule:
![\displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cbigg%5B%20%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Cbigg%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5BF%28x%29%5D)
- Basic Power Rule:
![\displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7B1%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B1%7D%7B3%7D%20-%201%7D%20%5Ccdot%20F%27%28x%29)
- Simplify:
![\displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%7D%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B-2%7D%7B3%7D%7D)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%28x%29%20%3D%20%5Cfrac%7BF%27%28x%29%7D%7B3%5BF%28x%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
<u>Step 3: Evaluate</u>
- Substitute in <em>x</em> [Derivative]:
![\displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20H%27%285%29%20%3D%20%5Cfrac%7BF%27%285%29%7D%7B3%5BF%285%29%5D%5E%5Cbigg%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D)
- Substitute in function values:

- Exponents:

- Multiply:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
three sides measuring 4 ft, 8 ft, and 10 ft
Step-by-step explanation:
To choose which dimensions that can create more than one triangle, we consider the given values carefully and how possible it will be to construct.
The only dimensions given in the option that will be possible to create more than one triangle from it, is three sides measuring 4 ft, 8 ft, and 10 ft.
4 ft, 8 ft, and 10 ft are in simple multiple of 2
4 ft, 8 ft, and 10 ft = 2 (2 ft, 4 ft, and 5 ft ), with this we can construct two triangles with three sides measuring 2 ft, 4 ft, and 5 ft.
Answer:
length: 16 m; width: 13 m
Step-by-step explanation:
Write each of the statements as an equation. You know that the formula for the perimeter is ...
P = 2(L +W)
so one of your equations is this one with the value of P filled in:
• 2L + 2W = 58
The other equation expresses the relation between L and W:
• L = W +3 . . . . . . . . the length is 3 meters greater than the width
There are many ways to solve such a system of equations. Since you have an expression for L, it is convenient to substitute that into the first equation to get ...
2(W+3) +2W = 58
4W +6 = 58 . . . . . . . simplify
4W = 52 . . . . . . . . . . subtract 6
W = 13 . . . . . . . . . . . .divide by 4
We can use the expression for L to find its value:
L = 13 +3 = 16
The length is 16 meters; the width is 13 meters.
Answer:
Radius of the circle = 6 units
Step-by-step explanation:
Let the radius of the circle be r
According to the given condition:
Area of the circle = 3 times the circumference of the circle
