Answer:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
When making a matrix of two equations with the variables x and y, the result will be a matrix with three columns:
- a column for the values of x in each equation
- a column for the values of y in each equation
- a column for the independent values of each equation
since our system of equations is:

we can see that the value for x in the first equation is 3 and in the second equation is 4, thus the first column will have the numbers 3 and 4:
![\left[\begin{array}{ccc}3&&\\4&&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26%26%5C%5C4%26%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Now for the values of y we hvae -5 in the first equation and -2 in the second equation, we update the matrix with another column with the values of -5 and -2:
![\left[\begin{array}{ccc}3&-5&\\4&-2&\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%26%5C%5C4%26-2%26%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Finally, the last column is the independent values of each equation (or the results) in the first equation that number is 12 and in the second equation is 15, thus the matrix is:
![\left[\begin{array}{ccc}3&-5&12\\4&-2&15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%2612%5C%5C4%26-2%2615%5C%5C%5Cend%7Barray%7D%5Cright%5D)
usually there is a line separating the columns for the values of x and y, and the independent values:
![\left[\begin{array}{ccc}3&-5 &|12\\4&-2 &|15\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26-5%20%20%26%7C12%5C%5C4%26-2%20%20%26%7C15%5C%5C%5Cend%7Barray%7D%5Cright%5D)
this is the matrix of the system of equations
10 to the 2nd power only means 10x10=100
35.6/100=0.256
35.6/10x10=0.256
Answer:
424 cm²
Step-by-step explanation:
The figure is composed of a square and a trapezium on top
A of square = 18² = 324 cm²
A of trapezium =
h (b₁ + b₂ )
where h is the perpendicular height and b₁, b₂ the parallel bases
Here h = 8, b₁ = 18 and b₂ = 7 , then
A = 0.5 × 8 × (18 + 7) = 4 × 25 = 100 cm²
Area of hexagonal park = 324 + 100 = 424 cm²
Answer:
600 feet
Step-by-step explanation:
60 feet per minute
m = minute
60m
60(10)
600 feet
Answer:
6 3/4
Step-by-step explanation:
3/4 * 9 = 27/4
How many times does 4 go into 27
It goes in 6 times (4*6 = 24) with 3 left over
The left over part goes over the denominator
6 3/4