Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Answer:
5010J
Explanation:
The following data were obtained from the question:
Mass (m) = 15g
Heat of fusion (ΔHf) = 334J/g
Heat required (Q) =..?
The heat energy required to melt the ice can be obtained as follow:
Q = m·ΔHf
Q = 15 x 334
Q = 5010J
Therefore, the heat energy required to melt the ice is 5010J.
I have completed the problem