Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Answer:
C. The potential energy change for a chemical reaction.
Explanation:
The reaction coordinate q illustrates, graphically, the energy changes during exothermic and endothermic reactions. This graphical representation of the energy changes in the course of a chemical reaction is known as reaction coordinates. A reaction coordinate is a graphical sequence of steps by which the reaction progresses from reactants through activated complexes to products. Reaction coordinates explain how far a reaction has proceeded towards the products or from the reactants.
From the images attached below, we can see the reaction coordinates in the reaction profiles.
Answer:
Calculate the unknown variable in the equation for gravitational potential energy, where potential energy is equal to mass multiplied by gravity and height; PE = mgh. Calculate for different gravity of different enviornments - Earth, the Moon, Jupiter, or specify your own. Free online physics calculators, mechanics, energy, calculators.
Explanation:
Answer:
pH 4 represents an acidic
The molarity of NaOH needed is calculated as follows
calculate the moles of KhC8h4O4
that is moles = mass/molar mass of KhC8h4O4(204.22 g/mol)
=0.5632g /204.22g/mol= 2.76 x10^-3 moles
write the equation for reaction
khc8h4O4 + NaOH ---> KNaC8h4O4 + H2O
from the equation above the reacting ratio of KhC8h4O4 to NaOh is 1:1 therefore the moles of Naoh is also 2.76 x10^-3 moles
molarity of NaOh = (moles of NaOh / volume ) x 1000
that is { (2.76 x10^-3) / 23.64} x100 =0.117 M