Answer:
The correct answer is "obligatory water reabsorption in the proximal convoluted tubule".
Explanation:
The mechanism for producing concentrated urine cannot include the obligatory reabsorption of water in the proximal convoluted tubule since this process is part of the nephron, the system that filters the blood. Glucose and amino acids are reabsorbed almost entirely, as are approximately 70% of filtered potassium and 80% of bicarbonate.
Have a nice day!
Answer: The particles in a solid are packed very close to each other.
Copper (I) oxidation state is 1 Cu2So4
copper (II) oxidation state is +2 CuSo4
copper (i) also give up one electron so you need two of them to react with the sulfate ion (which has charge of -2)
and also all metallic ions have an multiple oxidation levels corresponding to the number of electrons they can exchange or loose
Hope this helps
Answer:
No
Explanation:
It is not correct to say that an object with the largest volume has the largest mass.
Mass and volume are not directly related. In fact, the relationship between them can be direct or inverse.
Mass is the amount of matter in a substance. Volume is the space a body occupies.
- A balloon and a stone for example is a typical one.
- A balloon has more volume but far lesser mass compared to a stone.
- A stone, gravel sized has low volume but more massive than a balloon.
Therefore, it is wrong to say a balloon has more mass because it has more volume.
<span>0.925 grams if using hydrochloric acid in the reaction.
0.462 grams if using sulfuric acid in the reaction.
0.000 grams if using nitric acid in the reaction.
Assuming you're using HCl or a similar acid for this reaction, the equation for the reaction is:
Zn + 2 HCl ==> ZnCl2 + H2
So each mole of zinc used, produces 1 mole of hydrogen gas, or 2 moles of hydrogen atoms. So we need to look up the atomic weights of both zinc and hydrogen.
Atomic weight zinc = 65.38
Atomic weight hydrogen = 1.00794
Moles zinc = 30.0 g / 65.38 g/mol = 0.458855919 mol
Since we produce 2 moles of hydrogen atoms per mole of zinc, multiply by 2 and the atomic weight of hydrogen to get the mass of hydrogen produced. So
0.458855919 * 2 * 1.00794 = 0.92499847 grams.
Rounding to 3 significant figures gives 0.925 grams.
To show the assumption of the acid used, the balanced equation for sulfuric acid would be
Zn2 + H2SO4 ==> Zn(SO4)2 + H2
Which means that for every mole of zinc used, 1 mole of hydrogen gas is generated (half that produced via hydrochloric acid).
If nitric acid were used, the reaction is
4Zn + 10HNO3 ==> 4Zn(NO3)2 + N2O + 5H2O
Which means that NO hydrogen gas is generated.
The only justification for assuming hydrochloric acid is used is that it's a fairly common acid that's easy to obtain. But as shown above with 2 alternative acids, the amount of hydrogen gas generated is very dependent upon the exact chemical reaction occurring and asking "How many grams of hydrogen are produced if 30.0 g of zinc reacts?" is a rather silly question unless you specify EXACTLY what the reaction is.</span>