Answer:
The answer is 1.15m.
Since molality is defined as moles of solute divided by kg of solvent, we need to calculated the moles of H2SO4 and the mass of the solvent, which I presume is water.
We can find the number of H2SO4 moles by using its molarity
C=nV→nH2SO4=C⋅VH2SO4=6.00molesL⋅48.0⋅10−3L=0.288
Since water has a density of 1.00kgL, the mass of solvent is
m=ρ⋅Vwater=1.00kgL⋅0.250L=0.250 kg
Therefore, molality is
m=nmass.solvent=0.288moles0.250kg=1.15m
109/8.56=12.7
50+12.7
V=62.7
Mass= Volume x Density so i divided the mass and density to get the volume. and afterwards i would just add it to the mass to get my final answer
'The Sedimentary rock formed from years of sediments piling on top of it and being compressed.'
Answer:
140 K
Explanation:
Step 1: Given data
- Initial pressure of the gas (P₁): 3 atm
- Initial temperature of the gas (T₁): 280 K
- Final pressure of the gas (P₂): 1.5 atm
- Final temperature of the gas (T₂): ?
Step 2: Calculate the final temperature of the gas
We have a gas whose pressure is reduced. If we assume an ideal behavior, we can calculate the final temperature of the gas using Gay-Lussac's law.
T₁/P₁ = T₂/P₂
T₂ = T₁ × P₂/P₁
T₂ = 280 K × 1.5 atm/3 atm = 140 K