Answer:
u = 3.35 m/s
Explanation:
given,
mass , m = 0.455 kg
R = 0.675 m
Height of Loop = 1.021 m
the speed required at the top of loop be v
equating the force vertically


v² = 6.622
v = 2.57 m/s
Let the initial speed of ball be u
using conservation of energy

where, 



0.7 u² = 7.85092
u² = 11.2156
u = 3.35 m/s
the initial speed is 3.35 m/s
PART A)
If we increase the voltage supply in an electromagnet then it will increase the current that is flowing in it
So here due to increase in current there will be increase in the magnetic field due to that electromagnet
PART B)
Here in electric generator the current is produced by rotating a coil between two strong magnets.
So here mechanical energy of rotation of coil is converted into electromagnetic energy.
PART C)
Step up transformer convert the lower voltage input into higher voltage output
here number of turns of coil in output side or secondary number of coils is more than the number of coils in primary side or input side
PART D)
Force on a moving charge is given by

here we know that
q = 0.000600 C

B = 4.21 T
now from above equation we have


direction of force is given by right hand thumb rule
using that rule we got force downwards
Answer:
im sorry im just trying this app please dont report
Explanation:
please im begging you maam/sir
The distance of the canoeist from the dock is equal to length of the canoe, L.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that the total momentum of an isolated system is always conserved.
v(m₁ + m₂) = m₁v₁ + m₂v₂
where;
v is the velocity of the canoeist and the canoe when they are together
- u₁ is the velocity of the canoe
- u₂ velocity of the canoeist
- m₁ mass of the canoe
- m₂ mass of the canoeist
<h3>Distance traveled by the canoeist</h3>
The distance traveled by the canoeist from the back of the canoe to the front of the canoe is equal to the length of the canoe.
Thus, the distance of the canoeist from the dock is equal to length of the canoe, L.
Learn more about conservation of linear momentum here: brainly.com/question/7538238