Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:
where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet
so:
Answer:
1.97 * 10^8 m/s
Explanation:
Given that:
n = 1.52
Recall : speed of light (c) = 3 * 10^8 m/s
Speed (v) of light in glass:
v = speed of light / n
v = (3 * 10^8) / 1.52
v = 1.9736 * 10^8
Hence, speed of light in glass :
v = 1.97 * 10^8 m/s
Answer:
No you could not do that because if you tried even if you where to go super fast they would feel a breif second of pain before being completely riped from there body
Answer:
Explanation:
Given that
Mass of bowling ball M1=7.2kg
The radius of bowling ball r1=0.11m
Mass of billiard ball M2=0.38kg
The radius of the Billiard ball r2=0.028m
Gravitational constant
G=6.67×10^-11Nm²/kg²
The magnitude of their distance apart is given as
r=r1+r2
r=0.028+0.11
r=0.138m
Then, gravitational force is given as
F=GM1M2/r²
F=6.67×10^-11×7.2×0.38/0.138²
F=9.58×10^-9N
The force of attraction between the two balls is
F=9.58×10^-9N
Hi, thank you for posting your question here at Brainly.
Newton's second law of motion can be expressed as Fnet = ma. The next external for acting on, say for example, a moving car are the following:
*weight due to gravity (force down)
*friction force between he road and the car's tires (force opposite the car's direction)