(-1.2,-2.0) and (1.9,2.2) are the best approximations of the solutions to this system.
Option B
<u>Step-by-step explanation:</u>
Here, we have a graph of two functions from which we need to find the approximate value of common solutions. Let's find this:
First look at where we have intersection points, In first quadrant & in third quadrant.
<u>At first quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point . After doing this we can clearly see that the perpendicular lines cut x-axis at x=1.9 and y-axis at y=2.2. So, one point is (1.9,2.2)
<u>At Third quadrant:</u>
Draw perpendicular lines from x-axis & y-axis from this point. After doing this we can clearly see that the perpendicular lines cut x-axis at x=-1.2 and y-axis at y= -2.0. So, other point is (-1.2,-2.0).
Answer:
multiply them all and you will get the answer. use calculator
Answer:
Step-by-step explanation:
I think its the second one.
Answer:
a) 388.03
b) 148.49
c) π/8
Step-by-step explanation:
Find the diagram attached
Let the opposite side be y
Given
a) Hypotenuse = 420
theta = 3π/8 rad
theta = 3(180)/8
theta = 67.5degrees
Using the SOH CAH TOA identity
sin theta = opposite/hypotenuse
sin 67.5 = y/420
x = 420sin67.5
x = 420(0.9238)
x = 388.03
Hence the length of the side opposite to the given angle is 388.03
b) Hypotenuse = 420
theta = 3π/8 rad
theta = 3(180)/8
theta = 67.5degrees
Using the SOH CAH TOA identity
cos theta = adjacent/hypotenuse
cos 67.5 = x/420
x = 420cos67.5
x = 420(0.3827)
x = 148.49
Hence the length of the side adjacent to the given angle is 148.49
c) The sum of angle in the triangle is π
Let the measure of the unknown angle be z
z + 3π/8 + π/2 = π
z + 3π+4π/8 = π
z + 7π/8 = π
z = π - 7π/8
z = (8π-7π)/8
z = π/8
Hence the measure of the other acute angle is π/8
Answer:
Step-by-step explanation:
b is greater than or equal to 4: 4 ≤ b
and at most 13 : b ≤ 13
4 ≤ b ≤ 13