Answer:
Control valves are used in many processes to control flow, pressure, temperature or other variables. The type of valve used will depend on the size of the pipe, the overall pressure that the system operates, the flowing media, process conditions, and other factors.
Also
A control valve is a valve used to control fluid flow by varying the size of the flow passage as directed by a signal from a controller. This enables the direct control of flow rate and the consequential control of process quantities such as pressure, temperature, and liquid level.
<u><em>Hope this helps :)</em></u>
<u><em>Pls brainliest...</em></u>
Answer:
Hey mate I shall not tell you the answer I shall explain it to you after this if still you can't understand then say
Explanation:
Derive v = u + at by Graphical Method. Consider the velocity – time graph of a body shown in the below Figure
Derive s = ut + (1/2) at2 by Graphical Method. Velocity so time graph to derive the equations of motion.
Derive v2 = u2 + 2as by Graphical Method. Velocity–Time graph to derive the equations of motion.
I hope you understand now
enjoy your day
#Captainpower :)❤❤
Answer:

Explanation:
As we know that the radius of the circular motion is given as

time period of the motion is given as

now we know that it is moving with uniform speed
so it is given as

now plug in all data


To solve this problem it is necessary to apply the continuity equations in the fluid and the kinematic equation for the description of the displacement, velocity and acceleration.
By definition the movement of the Fluid under the terms of Speed, acceleration and displacement is,

Where,
Velocity in each state
g= Gravity
h = Height
Our values are given as,



Replacing at the kinetic equation to find
we have,



Applying the concepts of continuity,

We need to find A_2 then,

So the cross sectional area of the water stream at a point 0.11 m below the faucet is



Therefore the cross-sectional area of the water stream at a point 0.11 m below the faucet is 