Answer:
B
Explanation:
It is a gas and therefore according to particle model of matter it has large spaces between them and does not have a definite shape
I believe the correct answer from the choices listed above is option A. Fan blades would be an analogy for electron cloud model. Austrian physicist Erwin Schrödinger (1887-1961) developed an “Electron Cloud Model<span>” in 1926. It consisted of a dense nucleus surrounded by a cloud of electrons. Hope this helps.</span>
Answer:
PROTON AND NEUTRON
Explanation:
- The mass of proton is :

A proton is one of the main particles that make up the atom . The other two particles are neutron and electron. Protons are found in the nucleus of the atom.This is a tiny , dense region at the centre of the atom. Protons have a positive charge of one (+1) and a mass of 1 atomic mass unit ( amu ) , which is about
. Together with neutrons , they make up virtually all of the mass of an atom.
- The mass of neutron is also approximately:
but a little more than that .
Atoms of all elements - except Hydrogen , have neutrons in their nucleus . Unlike protons and electrons , these have no charge - they are electrically neutral . The mass of a neutron is slightly greater than the mass of a proton but not very significant
Answer:
The correct option is;
X, W, Y, Z
Explanation:
The parameters given are;
Spring (S), Spring Constant (N/m)
W, 24
X, 35
Y, 22
Z, 15
The equation for elastic potential energy,
, is 
The above equation can also be written as 
Where:
k = The spring constant in (N/m)
x = The spring extension
Therefore, since the elastic potential energy,
, of the spring is directly proportional to the spring constant, k, we have the springs with higher spring constant will have higher elastic potential energy,
, therefore the correct order is as follows;
X > W > Y > Z
Answer:
18.3 kilopascals
Explanation:
We are given that the volume of this container is 0.0372 meters^3, that the mass of water is 4.65 grams, and that the temperature of this water vapor ( over time ) is 368 degrees Kelvins. This is a problem where the ideal gas law is an " ideal " application.
_______________________________________________________
First calculate the number of moles present in the water ( H2O ). Water has a mass of 18, so it should be that n, in the ideal gas law - PV = nRT, is equal to 4 / 18. It is the amount of the substance.
We now have enough information to solve for P in PV = nRT,
P( 0.0372 ) = 4 / 18( 8.314 )( 368 ),
P ≈ 18,276.9
Pressure ≈ 18.3 kilopascals
<u><em>Hope that helps!</em></u>