I got on here because I don't understand the question but I did my best to answer because I noticed you asked 3 days ago. IF I'm right the answer is D. My diagram shows
A at -50 °C
B at 0 °C
C at 50 °C
D at 100 °C (gas to liquid or liquid to gas)
And E at 150 °C
So I hope I'm right because I'm answering the same question.
Answer: it is called the ovary
5.58 X
Litres is the volume, in liters, occupied by 0.015 molecules of oxygen at STP.
Explanation:
Data given:
molecules of oxygen = 0.015
number of moles of oxygen =?
temperature at STP = 273 K
Pressure at STP = 1 atm
volume = ?
R (gas constant) = 0.08201 L atm/mole K
to convert molecules to moles,
number of moles = 
number of moles = 2.49 x 
Applying the ideal gas law since the oxygen is at STP,
PV = nRT
rearranging the equation:
V = 
putting the values in the rearranged equation:
V = 
V = 5.58 X
Litres.
Answer:
moles = no. of molecules / Avogadro's number
= 2.26 x 10^33 / 6.022 x 10^23
= 3752906011
Round to significant figures which is 3 = 3.75 x 10^9 mol
Explanation: The formula for finding how many moles of a substance when given the amount of molecules is: moles = number of molecules / Avogadro's number
Answer:
Here's what I get
Explanation:
A. Initial observation
Gary's shell had slime and an odour.
B. Independent variable
The independent variable is the one that the experimenter changes.
There are two independent variables: the rubbing with seaweed and the drinking of Dr. Kelp.
C. The dependent variable
The dependent variable is the amount of slime and odour.
D. The conclusion
Sponge Bob can conclude that rubbing the shell with seaweed and drinking Dr. Kelp removes the slime and odour.
However, this was a poorly designed experiment. He doesn't know if it is the seaweed or the Dr. Kelp that gives the result or if he must use both together. He should change only one independent variable at a time.