In an experiement things that are changing are called variables.
The molar mass of the unknown gas is 184.96 g/mol
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>How to determine the molar mass of the unknown gas </h3>
The following data were obtained from the question:
- Rate of unknown gas (R₁) = R
- Rate of CH₄ (R₂) = 3.4R
- Molar mass of CH₄ (M₂) = 16 g/mol
- Molar mass of unknown gas (M₁) =?
The molar mass of the unknown gas can be obtained as follow:
R₁/R₂ = √(M₂/M₁)
R / 3.4R = √(16 / M₁)
1 / 3.4 = √(16 / M₁)
Square both side
(1 / 3.4)² = 16 / M₁
Cross multiply
(1 / 3.4)² × M₁ = 16
Divide both side by (1 / 3.4)²
M₁ = 16 / (1 / 3.4)²
M₁ = 184.96 g/mol
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
#SPJ1
Zinc is no longer the positive electrode because copper has a more positive (higher) value than zinc (anode). The anode value is reduced by the potential of the other electrode.
<h3>In a galvanic cell, is the anode positive or negative?</h3>
In a galvanic (voltaic) cell, the cathode is regarded as positive and the anode as negative. This seems reasonable given that the cathode is where electrons flow from the anode, which is where they originate.
<h3>What is a galvanic cell?</h3>
An electrochemical cell called a galvanic cell or voltaic cell, respectively named after the scientists Luigi Galvani and Alessandro Volta produces an electric current by spontaneous oxidation-reduction reactions. A typical device typically consists of two distinct metals that are submerged in separate beakers that each contains their own metal ions in solution and are either connected by a salt bridge or divided by a porous membrane.
Learn more about Galvanic cells here:-
brainly.com/question/13927063
#SPJ4
Answer:
true or false
Explanation:
could it be true that it can become false when you haven't try to be postive
Answer: Conduction is the process by which heat energy is transmitted through collisions between neighboring atoms or molecules. ... The fire's heat causes molecules in the pan to vibrate faster, making it hotter. These vibrating molecules collide with their neighboring molecules, making them also vibrate faster.
HOPE THIS HELPS