Answer:
The answer to your question is letter C.
Explanation:
Reaction
Potassium hydroxide = KOH
Barium chloride = BaCl₂
Potassium chloride = KCl
Barium hydroxide = Ba(OH)₂
KOH + BaCl₂ ⇒ KCl + Ba(OH)₂
Reactant Elements Products
1 K 1
1 Ba 1
2 Cl 1
1 H 2
1 O 2
The reaction is unbalanced
2KOH + BaCl₂ ⇒ 2KCl + Ba(OH)₂
Reactant Elements Products
2 K 2
1 Ba 1
2 Cl 2
2 H 2
2 O 2
Now, the reaction is balanced
Answer:
The required mass to prepare 2.5 L of 1.0 M NaOH solution is 100 g
Explanation:
We do this by preparing the equation:
Mass = concentration (mol/L) x volume (L) x Molar mass
Mass = 1.0 M x 2.5 L x 40 g/mol
Mass = 100 g
Description of a nerve signal
The nerve signal, or action potential, is a coordinated movement of sodium and potassium ions across the nerve cell membrane. Here's how it works: As we discussed, the inside of the cell is slightly negatively charged (resting membrane potential of -70 to -80 mV).
Answer: D
Explanation:
Chlorine is in group 7 or (VII) in Roman numerals, which means it has 7 balance electrons. It only needs one electron to become stable, hence it is next to the noble gases
T k = 15 + 273 = 288 K
4.6 / 13 => 0.353 atm
0.50 / 0.10 => 5 L
<span>(15 + 273) K x (13 atm / 7.6 atm) x (0.50 L / 0.10 L)
</span>
<span>= </span>2463.15 K
<span>hope this helps!</span>