We want to use this primary leaving group on this primary starting material because it will give us a greater yield and say, if we were to use a secondary reagent in place of this primary.
Now we've moved on from our fundamentals. So we have our starting material and we have That's our beautiful sec futile ether. So now that we've written out are starting material, we can take a thing about where exactly some reactivity may happen. So, for example, could start out with an alcohol that looks as the following. This is a secondary alcohol you can see. So now we need to take a look at some of alcohol.
So now we need to think about our alcohol. Hey, light again. Well, we'll have a hey light. That's a very good leaving group. So we need alcohol. So for example, so now we have a primary structure here, So this will undergo and s and two reaction due to the lacking of hysteric hindrance. Formal negative charge attacks that electrical it carbon bro.
Learn more about Alcohol here-
brainly.com/question/14229343
#SPJ4
He variable that a scientist changes when conducting an experiment is called the manipulated variable
Molar mass ( CuSO₄) = 159.609 g/mol
159.609 g ----------------- 6.02 x 10²³ molecules
? g ------------------ 3.36 x 10²³ molecules
mass = ( 3.36 x10²³) x 159.609 / 6.02 x 10²³
mass = 5.36 x 10²⁴ / 6.02 x 10²³
mass = 8.90 g
hope this helps!
Answer:
Nucleic acid is an important class of macromolecules found in all cells and viruses. Deoxyribonucleic acid (DNA) encodes the information the cell needs to make proteins.
A related type of nucleic acid, called ribonucleic acid (RNA), comes in different molecular forms that participate in protein synthesis.