1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vikki [24]
3 years ago
12

In a study comparing banks in Germany and Great Britain, a sample of 145 matched pairs of banks was formed. Each pair contained

one bank from Germany and one from Great Britain. The pairings were made in such a way that the two members were as similar as possible in regards for factors like size and age. The ratio of total loans outstanding to total assets was calculated for each bank. For this ration, the sample mean difference (German – Great Britain) was 0.0518 and the sample standard deviation of the differences was 0.3055. Test, against a two sided alternative, the null hypothesis that the two population means are equal.
Engineering
1 answer:
elena55 [62]3 years ago
5 0

Answer:

The difference between the two population is mean

Explanation:

Let the population mean for Germany and Great Britain be represented by \mu_1 and \mu_2 respectively hence

Null hypothesis

H_o: \mu_1-\mu_2=0

Alternative hypothesis

H_1: \mu_1-\mu_2\neq 0

Taking \alpha=0.05  

s_d=0.3055

\bar d=\bar x-\bar y=0.0518

Sample size, n=145

Student’s t statistics is given by

t=\frac {\bar d \sqrt n}{s_d}=\frac {0.0518\times \sqrt 145}{0.3055}=2.042

From t table, t_{n-1,\alpha/2}=t_{144,0.025}=1.977

The decision rule is to reject null hypothesis if

\frac {\bar d \sqrt n}{s_d}>t_{n-1, \alpha/2}

Therefore, we reject the null hypothesis because the computed t value is more than critical value. We conclude that the difference between the two population is mean.

You might be interested in
Miller Indices:
svetlana [45]

Answer:

A) The sketches for the required planes were drawn in the first attachment [1 2 1] and the second attachment [1 2 -4].

B) The closest distance between planes are d₁₂₁=a/√6 and d₁₂₋₄=a/√21 with  lattice constant a.

C) Five posible directions that electrons can move on the surface of a [1 0 0] silicon crystal are: |0 0 1|, |0 1 3|, |0 1 1|, |0 3 1| and |0 0 1|.

Compleated question:

1. Miller Indices:

a. Sketch (on separate plots) the (121) and (12-4) planes for a face centered cubic crystal structure.

b. What are the closest distances between planes (called d₁₂₁ and d₁₂₋₄)?

c. List five possible directions (using the Miller Indices) the electron can move on the surface of a (100) silicon crystal.

Explanation:

A)To draw a plane in a face centered cubic lattice, you have to follow these instructions:

1- the cube has 3 main directions called "a", "b" and "c" (as shown in the first attachment) and the planes has 3 main coeficients shown as [l m n]

2- The coordinates of that plane are written as: π:[1/a₀ 1/b₀ 1/c₀] (if one of the coordinates is 0, for example [1 1 0], c₀ is ∞, therefore that plane never cross the direction c).

3- Identify the points a₀, b₀, and c₀ at the plane that crosses this main directions and point them in the cubic cell.

4- Join the points.

<u>In this case, for [1 2 1]:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=1=1/c_0 \rightarrow c_0=1

<u>for </u>[1 2 \overline{4}]<u>:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=\overline{4}=-4/c_0 \rightarrow c_0=-0.25

B) The closest distance between planes with the same Miller indices can be calculated as:

With \pi:[l m n] ,the distance is d_{lmn}= \displaystyle \frac{a}{\sqrt{l^2+m^2+n^2}} with lattice constant a.

<u>In this case, for [1 2 1]:</u>

<u />d_{121}= \displaystyle \frac{a}{\sqrt{1^2+2^2+1^2}}=\frac{a}{\sqrt{6}}=0.41a<u />

<u>for </u>[1 2 \overline{4}]<u>:</u>

d_{12\overline{4}}= \displaystyle \frac{a}{\sqrt{1^2+2^2+(-4)^2}}=\frac{a}{\sqrt{21}}=0.22a

C) The possible directions that electrons can move on a surface of a crystallographic plane are the directions contain in that plane that point in the direction between nuclei. In a silicon crystal, an fcc structure, in the plane [1 0 0], we can point in the directions between the nuclei in the vertex (0 0 0) and e nuclei in each other vertex. Also, we can point in the direction between the nuclei in the vertex (0 0 0) and e nuclei in the center of the face of the adjacent crystals above and sideways. Therefore:

dir₁=|0 0 1|

dir₂=|0 0.5 1.5|≡|0 1 3|

dir₃=|0 1 1|

dir₄=|0 1.5 0.5|≡|0 3 1|

dir₅=|0 0 1|

5 0
3 years ago
‼️Will mark brainliest‼️
Slav-nsk [51]
YAll don’t tell my cousin I’m hacking her school resources because I got a 0 in a test and she got a 100

4 0
3 years ago
What is the velocity of flow in an asphalt channel that has a hydraulic radius of 3.404 m, length of 200 m and bed slope of 0.00
yKpoI14uk [10]

Answer:

The velocity of flow is 10.0 m/s.

Explanation:

We shall use Manning's equation to calculate the velocity of flow

Velocity of flow by manning's equation is given by

V=\frac{1}{n}R^{2/3}S^{1/2}

where

n = manning's roughness coefficient

R = hydraulic radius

S = bed slope of the channel

We know that for an asphalt channel value of manning's roughness coefficient = 0.016

Applying values in the above equation we obtain velocity of flow as

V=\frac{1}{0.016}\times 3.404^{2/3}\times 0.005^{1/2}\\\\\therefore V=10.000m/s

7 0
3 years ago
Many farms and ranches use electric fences to keep animals from getting into or out of specific pastures. When switched on, an e
Nikolay [14]

Answer:

Aluminum

Explanation:

The best material to use when creating an electric fence would be Aluminum. Aluminum wiring is incredibly durable and can be easily obtained. Since aluminum is a non-magnetic metal its conducting capabilities far exceed other metallic options in the market and is also why companies choose aluminum for their high tension cable wiring. Aside from being more expensive than other feasible options its durability and conducting capabilities make it easily the best option.

7 0
2 years ago
Read 2 more answers
Provide one example of a bad collision, and suggest an engineering solution to avoid the collision.
JulsSmile [24]

Answer:

1). Keep your distance. Drive far enough behind the car in front of you so you can stop safely. ...

Drive strategically. Avoid situations that could force you to suddenly use your brakes. ...

Don't get distracted. ...

Don't drive when drowsy or under the influence.

2). By far the deadliest accident type is the head-on collision. Head-on collisions consider both vehicle's speed at the time of the crash, which means even an accident at lower speeds can be catastrophic

Explanation:

first is how to avoid the collision and second is bad collision

7 0
2 years ago
Other questions:
  • A tire-pressure monitoring system warns you with a dashboard alert when one of your car tires is significantly under-inflated.
    6·1 answer
  • Note that common skills are listed toward the top, and less common skills are listed toward the bottom.
    14·1 answer
  • Verify the below velocity distribution describes a fluid in a state of pure rotation. What is the angular Velocity? (a)-Vx = -1/
    7·1 answer
  • Nitrogen enters a steady-flow heat exchanger at 150 kPa, 10°C, and 100 m/s, and it receives heat as it flows through it. Nitroge
    15·1 answer
  • A heat recovery system​ (HRS) is used to conserve heat from the surroundings and supply it to the Mars Rover. The HRS fluid loop
    12·1 answer
  • Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
    6·1 answer
  • State 3 advantages and 3 disadvantages of unit rate contract​
    10·1 answer
  • Introduce JTA and JT
    8·1 answer
  • Whats the purpose of the keyway
    13·1 answer
  • Engineers designed a motorcycle helmet from a long-lasting and safe material that protects the wearer from accidents and excessi
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!