Answer:
a. 318.2k
b. 45.2kj
Explanation:
Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.
See attachment for detailed analysis
Answer:
Explanation:
We use kinetic friction when a body is moving i.e.
for calculations.
Static friction is used when a body is in rest while kinetic friction is used when a body is moving and its value is quite low as compared to static friction .
Static friction value increases as we apply more force while kinetic friction occurs when there is relative motion between bodies.
Answer:
1. True
2. True
3. False
Explanation:
The office location is where the soil layer is not uniform. The thickness of the soil varies which could lead to doors being jammed. The engineer needs to estimate the differential in clay soil.
The inclined surface can hold less weight than a vertical surface. The capacity to hold the weight is due to the gravitational force which is exerted to the load.
Answer:
a)Δs = 834 mm
b)V=1122 mm/s

Explanation:
Given that

a)
When t= 2 s


s= 114 mm
At t= 4 s


s= 948 mm
So the displacement between 2 s to 4 s
Δs = 948 - 114 mm
Δs = 834 mm
b)
We know that velocity V


At t= 5 s


V=1122 mm/s
We know that acceleration a


a= 90 t
a = 90 x 5

Answer:

Explanation:
Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:
![Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]](https://tex.z-dn.net/?f=Q_%7Bwater%7D%20%3D%20%281.4%5C%2CL%29%5Ccdot%28%5Cfrac%7B1%5C%2Cm%5E%7B3%7D%7D%7B1000%5C%2CL%7D%20%29%5Ccdot%20%281000%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%29%5Ccdot%20%5B%284.187%5C%2C%5Cfrac%7BkJ%7D%7Bkg%5Ccdot%20%5E%7B%5Ctextdegree%7DC%7D%20%29%5Ccdot%20%28100%5E%7B%5Ctextdegree%7DC-25%5E%7B%5Ctextdegree%7DC%29%2B2257%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%5D)

The heat liberated by the LP gas is:


A kilogram of LP gas has a minimum combustion power of
. Then, the required mass is:

