1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marysya12 [62]
3 years ago
8

A 1 turn coil carries has a radius of 9.8 cm and a magnetic moment of 6.2 X 10 -2 Am 2. What is the current through the coil?

Engineering
1 answer:
Alexus [3.1K]3 years ago
6 0

Answer:

The current through the coil is 2.05 A

Explanation:

Given;

number of turns of the coil, N = 1

radius of the coil, r = 9.8 cm = 0.098 m

magnetic moment of the coil, P = 6.2 x 10⁻² A m²

The magnetic moment is given by;

P = IA

Where;

I is the current through the coil

A is area of the coil = πr² = π(0.098)² = 0.03018 m²

The current through the coil is given by;

I = P / A

I = (6.2 x 10⁻² ) / (0.03018)

I = 2.05 A

Therefore, the current through the coil is 2.05 A

You might be interested in
Traffic at a roundabout moves
sweet-ann [11.9K]

Answer:

b-counter-clockwise

Explanation:

3 0
3 years ago
In a production turning operation, the foreman has decreed that a single pass must be completed on the cylindrical workpiece in
stellarik [79]

Answer:

V = 125.7m/min

Explanation:

Given:

L = 400 mm ≈ 0.4m

D = 150 mm ≈ 0.15m

T = 5 minutes

F = 0.30mm ≈ 0.0003m

To calculate the cutting speed, let's use the formula :

T = \frac{pi* D * L}{V*F}

We are to find the speed, V. Let's make it the subject.

V = \frac{pi* D * L}{F*T}

Substituting values we have:

V = \frac{pi* 0.4 * 0.15}{0.0003*5}

V = 125.68 m/min ≈ 125.7 m/min

Therefore, V = 125.7m/min

7 0
3 years ago
A pitfall cited in Section 1.10 is expecting to improve the overall performance of a computer by improving only one aspect of th
Oxana [17]

Answer:

a) For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

b) For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

c) A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

Explanation:

From the info given we know that a computer running a program that requires 250 s, with 70 s spent executing FP instructions, 85 s executed L/S instructions and 40 s spent executing branch instructions.

Part 1

For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

Part 2

For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

And we can quantify the decrease using the relative change:

\% Change = \frac{5s}{55 s} *100 = 9.09\% of reduction

Part 3

A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

8 0
3 years ago
Pls help me it’s due today
hichkok12 [17]

Answer:

C. 14.55

Explanation:

12 x 10 = 120

120 divded by 10 is 12

so now we do the left side

7 x 3 = 21 divded by 10 is 2

so now we have 14

and the remaning area is 0.55

so 14.55

6 0
3 years ago
Air is contained in a vertical piston–cylinder assembly such that the piston is in static equilibrium. The atmosphere exerts a p
oee [108]

Answer:

a) 24 kg

b) 32 kg

Explanation:

The gauge pressure is of the gas is equal to the weight of the piston divided by its area:

p = P / A

p = m * g / (π/4 * d^2)

Rearranging

p * (π/4 * d^2) = m * g

m = p * (π/4 * d^2) / g

m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg

After the weight is added the gauge pressure is 2.8kPa

The mass of piston plus addded weight is

m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg

56 - 24 = 32 kg

The mass of the added weight is 32 kg.

5 0
3 years ago
Other questions:
  • A student is using a 12.9 ft ramp to raise an object 6 ft above the ground.
    5·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • Plz help me
    12·1 answer
  • Am i eating ramon nooddles rn
    10·2 answers
  • You are preparing to work with Chemical A. You open the appropriate storage cabinet, and notice Chemical B, as well as Chemical
    9·1 answer
  • A minor road intersects a major 4-lane divided road with a design speed of 50 mph and a median width of 12 ft. The intersection
    13·1 answer
  • What is the difference between digital instruments and decimal scaled instruments to measure
    6·1 answer
  • If most wildfires are suppressed (all fires are put out) for many years, how does the risk of wildfire in the area change in the
    10·1 answer
  • scrapers are used to haul dirt from a borrow pit to the cap of a landfill. the estimated cycle time for the scrapers is 9.5 minu
    14·1 answer
  • A sprinter reaches his maximum speed in 2.5sec from rest with constant acceleration. He then maintains that speed and finishes t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!