Hello there,
In the problems given in the question, the driver's license is confiscated and suspended.
So our answer is: A)
Achievements.
Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>
Answer:
The diameter is 50mm
Explanation:
The answer is in two stages. At first the torque (or twisting moment) acting on the shaft and needed to transmit the power needs to be calculated. Then the diameter of the shaft can be obtained using another equation that involves the torque obtained above.
T=(P×60)/(2×pi×N)
T is the Torque
P is the the power to be transmitted by the shaft; 40kW or 40×10³W
pi=3.142
N is the speed of the shaft; 250rpm
T=(40×10³×60)/(2×3.142×250)
T=1527.689Nm
Diameter of a shaft can be obtained from the formula
T=(pi × SS ×d³)/16
Where
SS is the allowable shear stress; 70MPa or 70×10⁶Pa
d is the diameter of the shaft
Making d the subject of the formula
d= cubroot[(T×16)/(pi×SS)]
d=cubroot[(1527.689×16)/(3.142×70×10⁶)]
d=0.04808m or 48.1mm approx 50mm