1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
3 years ago
12

What type of models can be communicated in more than one way.

Engineering
1 answer:
guajiro [1.7K]3 years ago
4 0
A 3-D model can be communicated, and can also be a visual model.
You might be interested in
The correct statement about the lift and drag on an object is:_______
Lisa [10]

Answer:

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

Explanation:

When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.

The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.

Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.

Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).

The only correct option left is "A"

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

8 0
3 years ago
Read 2 more answers
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
Rashid [163]

The heat transferred to and the work produced by the steam during this process  is 13781.618 kJ/kg

<h3>​How to calcultae the heat?</h3>

The Net Change in Enthalpy will be:

= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg

Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)

= 1/2 x ( 75 + 225) x (5 - 2)

W = 450 KJ

From the First Law of Thermodynamics, Q = U + W

So, Heat Transfer = Change in Internal Energy + Work Done

= 13331.618 + 450

Q = 13781.618 kJ/kg

Learn more about heat on:

brainly.com/question/13439286

#SP1

6 0
1 year ago
The total floor area of a building, including below-grade space but excluding unenclosed areas, measured from the exterior of th
alex41 [277]

Answer:

Gross building area

Explanation:

The Gross building area refers to the entire area of a building covering all the floors. The measurement is expressed in square feet. The Gross building area also includes basements, penthouses, and mezzanines. It is calculated by estimating the exterior dimension of the building. Storage rooms, laundries, staircases are also a part of the gross building area.

6 0
3 years ago
2.
den301095 [7]
Jae pain seems the most off
4 0
3 years ago
Other questions:
  • A tire-pressure monitoring system warns you with a dashboard alert when one of your car tires is significantly under-inflated.
    6·1 answer
  • A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
    9·1 answer
  • Select the right answer<br>​
    8·1 answer
  • A closed system undergoes a process in which work is done on the system and the heat transfer Q occurs only at temperature Tb. F
    8·1 answer
  • Turbine blades mounted to a rotating disc in a gas turbine engine are exposed to a gas stream that is at [infinity] = 1100°C and
    6·1 answer
  • The heat transfer rate per unit area in a thermal circuit is equivalent to what quantity in an electric circuit? A. voltage B. c
    6·1 answer
  • Breaks do not overheat true false ?
    6·1 answer
  • An object at a vertical elevation of 20 m and a speed of 5 m/s decreases in elevation to an elevation of 1 m. At this location,
    15·1 answer
  • My t!t$ feel sore and heavyy
    13·1 answer
  • A two-bus power system is interconnected by one transmission line. Bus 1 is a generator bus with specified terminal voltage magn
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!