D is the correct answer because it’s greater than 985, 405
Answer: A reasonable estimate of the minimum is 20.
Answer:
a) 8*88*10⁻⁶ ( 0.00088 %)
b) 0.2137 (21.37%)
Step-by-step explanation:
if the test contains 25 questions and each questions is independent of the others, then the random variable X= answer "x" questions correctly , has a binomial probability distribution. Then
P(X=x)= n!/((n-x)!*x!)*p^x*(1-p)^(n-x)
where
n= total number of questions= 25
p= probability of getting a question right = 1/4
then
a) P(x=n) = p^n = (1/4)²⁵ = 8*88*10⁻⁶ ( 0.00088 %)
b) P(x<5)= F(5)
where F(x) is the cumulative binomial probability distribution- Then from tables
P(x<5)= F(5)= 0.2137 (21.37%)
In an installment loan, a lender loans a borrower a principal amount P, on which the borrower will pay a yearly interest rate of i (as a fraction, e.g. a rate of 6% would correspond to i=0.06) for n years. The borrower pays a fixed amount M to the lender q times per year. At the end of the n years, the last payment by the borrower pays off the loan.
After k payments, the amount A still owed is
<span>A = P(1+[i/q])k - Mq([1+(i/q)]k-1)/i,
= (P-Mq/i)(1+[i/q])k + Mq/i.
</span>The amount of the fixed payment is determined by<span>M = Pi/[q(1-[1+(i/q)]-nq)].
</span>The amount of principal that can be paid off in n years is<span>P = M(1-[1+(i/q)]-nq)q/i.
</span>The number of years needed to pay off the loan isn = -log(1-[Pi/(Mq)])/(q log[1+(i/q)]).
The total amount paid by the borrower is Mnq, and the total amount of interest paid is<span>I = Mnq - P.</span>
Answer:
in steps
Step-by-step explanation:
DE // BC
m∠ADE = m∠ABC and m∠AED = m∠ACB
∴ ΔADE similar to ΔABC
AB/AD = AC/AE
(AD + DB) / AD = (AE + EC) / AE
AD/AD + DB/AD = AE/AE + EC/AE
1 + DB/AD = 1 + EC/AE
DB/AD = EC/AE (AD/DB = AE/EC)