Explanation:
The given reaction will be as follows.

So, equilibrium constant for this equation will be as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
As it is given that concentration of all the species is 2.4. Therefore, calculate the value of equilibrium constant as follows.
![K_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E%7B2%7D%7D)
= 
= 0.173
Thus, we can conclude that equilibrium constant for the given reaction is 0.173.
The picture of Au₃N is attached below.
The first part of the picture shows the formation of Au and N ions.
Formation of Au⁺¹ :
As Gold has one valence electron in 6s¹ therefore, it will loose it to form Au⁺¹. In case of Au₃N three atoms of Au looses three electrons to form three Au⁺¹ ions.
Formation of N⁻³ :
As Nitrogen has 5 valence elctrions therefore, it will gain three electrons that lost by Au to form Nitrite (i.e. N⁻³)
Formation of Au₃N:
Three cations of Au⁺ combines with one anion of N⁻³ to form a neutral ionic compound i.e. Au₃N as shown in second part of the picture.
The physical explanation is that increasing temperature increases the kinetic energy of the gas molecules. Hence, their random motion breaks more intermolecular bonds and the gas is less dissolved in the solvent. In contrast, solid solutes in water have increased solubility with increased temperatures.
Answer:
cellular respiration
Explanation:
All exergonic processes produced in the cell, through which substances oxidize and chemical energy is released, are grouped under the name of cellular respiration, but to break down an organic molecule the cells employ, mainly dehydrogenations that can be carried carried out in the presence or absence of atmospheric O2 oxygen. There are therefore two types of breathing: aerobic respiration and anaerobic respiration. The latter also called fermentation.
Aerobic respiration (oxidative phosphorylation)
- Use molecular O2.
- It degrades glucose to CO2 and H2O
- Exergonic
- Recovers about 50% of chemical energy
- Present in most organisms.
- It uses enzymes located in the mitochondria.
Answer:
595.5
Explanation:
chloroform with 24.0 g C was 238.2 g
24g/238.2g= 60g/x
595.5