Citric acid has the molecular formula C6H8O7 so you can add the molar masses of the elements from the periodic table. C has a molar mass of 12.01 g/mol, H has 1.01 g/mol and O has 15.999 g/mol. Now you calculate the total molar mass= (6*12.01 + 8*1.01 + 7*15.999). This yields a molar weight of 192.124 g/mol (anhydrous)
Answer:
c. decarboxylation of an a-keto acid.
Explanation:
Decarboxylation refers to the removal of the carboxyl group from a carboxylic acid and thus releasing carbon dioxide. Decarboxylases are enzymes that speed up the removal of the carboxyl group from acids. These reactants could be amino acids, alpha-keto acids, and beta-keto acids. Biotin is known to catalyze the decarboxylation of malonyl CoA to acetyl CoA during fatty acid synthesis.
Malonyl CoA is converted to acetyl CoA after decarboxylation assisted by biotin also known as Vitamin H. Alpha keto acids are involved in fatty acids synthesis and Malonyl CoA is an alpha-keto acid because the keto group is located in the first carbon near the carboxylic acid group. Keto acids have both a carboxyl group and a ketone group.
What the heck is this 9287262729272727272727171
The image represents A COMPOUND because the molecules are BONDED CHEMICALLY.
A compound is a substance formed when two or more elements combine together chemically. In the process of chemical combination, the chemical bonds that were present in the participating elements will be broken and new chemical bonds will be formed in the product.
The expected speed is v = 85.5 km/h
v = 85.5 km/h = (85.5 km/h)*(0.2778 (m/s)/(km/h)) = 23.75 m/s
If there is an uncertainty of 2 meters in measuring the position, then within a 1-second time interval:
The lower measurement for the speed is v₁ = 21.75 m/s,
The upper measurement for the speed is v₂ = 25.75 m/s.
The range of variation is
Δv = v₂ - v₁ = 4 m/s
The uncertainty in measuring the speed is
Δv/v = 4/23.75 = 0.1684 = 16.84%
Answer: 16.8%