Answer:
The correct option is C ( the activation energy is lowered, the reactant molecules collide more frequently and with greater energy per collision).
Explanation:
The rate of a chemical reaction is defined as the quantity of products that are formed per unit time. Rates can be computed based on either how the reactants are used up or how products are formed.
There are factors that affects the rate of a chemical reaction and they include TEMPERATURE, catalyst, surface area of reacting substances and many among others.
TEMPERATURE increase in most chemical reactions increases the rate of the reaction. This is because molecules gain more energy at higher temperatures. This increases their kinetic energy resulting in more effective collision of the reactant molecules. The rate of reaction depends on the frequency of this effective collisions between the reacting particles.
Effective collision are those that result in reactions, which when they occur, the colliding particles become activated with increased kinetic energy. This kinetic energy must exceed a particular energy barrier for a particular reaction if the reaction must take place. This energy barrier that must be overcome is known as the ACTIVATION ENERGY.
The phenomenon that best explains the miscibility of heptane in pentane is that both are non-polar compounds.
<h3>Solubility of compounds</h3>
Solubility is defined as the ability of a solute or substance to dissolve in a given solvent and at a particular temperature.
Heptane is a straight-chain alkane hydrocarbon that contains 7 carbon atoms. It is a non polar solvent.
Pentane is also a straight-chain alkane hydrocarbon that contains 5 carbon atoms. It is also a non- polar solvent.
Both pentane and heptane are non-polar because the atoms in their molecules share electrons equally. They are able to dissolve each other because they are alike.
Learn more about solubility here:
brainly.com/question/23946616
Please scan the whole entire question
Answer:
1.62 × 10²⁴ atoms are in 52.3 g of lithium hypochlorite.
Explanation:
To find the amount of atoms that are in 52.3 g of lithium hypochlorite, we must first find the amount of moles. We do this by dividing by the molar mass of lithium hypochlorite.
52.3 g ÷ 58.4 g/mol = 0.896 mol
Next we must find the amount of formula units, we do this be multiplying by Avagadro's number.
0.896 mol × 6.02 × 10²³ = 5.39 × 10²³ f.u.
Now to get the amount of atoms we can multiply the amount of formula units by the amout of atoms in one formula unit.
5.39 × 10²³ f.u. × 3 atom/f.u. = 1.62 × 10²⁴ atoms
1.62 × 10²⁴ atoms are in 52.3 g of lithium hypochlorite.