Answer:

Explanation:
To calculate the period we need the formula:

Where
is the radius of the moon,
is the universal constant of gravitation and
is the mass of mars.
The period of Phobos:

The period of Deimos:

The ratio of the period of Phobos and Deimos:


Most terms get canceled and we have:

According to the problem

so the ratio will be:
≈ 
the ratio of the period of revolution of Phobos to that of Deimos is 0.2528
Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.
Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 
Answer:
Well. the law says "an object in motion stays in motion" So seatbelts could be one. they stop us humans from continuing to move when the car stops.
its c electromagnetic waves must have a medium in which to travel, but sound waves can travel anywhere.