Answer:
Answer is 100
Step-by-step explanation:
(64/8+2-10) + (81+19)
(8+2-10) + (81+19)
(10-10) + (100)
(0) + (100)
0+100
100
Answer:
y = - 16t² + 55.6t + 6
Step-by-step explanation:
Using y - y₀ = vt - 1/2gt² where g = 32 ft/s², and v the velocity of the football
So y = y₀ + vt - 1/2 × (32 ft/s²)t²
y = y₀ + vt - 16t² where y₀ = 6.5 ft
y = 6 + vt - 16t²
Now, when t = 3.5 s, that is the time the teammate catches the ball after the quarterback throws it, y = 5 ft. Substituting these into the equation, we have
5 = 6.5 + v(3.5 s) - 16(3.5 s)²
5 = 6.5 + 3.5v - 196
collecting like terms, we have
5 - 6.5 + 196 = 3.5v
194.5 = 3.5v
v = 194.5/3.5 = 55.57 ft/s ≅ 55.6 ft/s
So, substituting v into y, our quadratic model is
y = 6 + 55.6t - 16t²
re-arranging, we have
y = - 16t² + 55.6t + 6
Answer:
Step-by-step explanation:
It maybe will be ![\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}](https://tex.z-dn.net/?f=%5Cneq%20x%5E%7B2%7D%20%5Cleq%20%5C%5C%20%5C%5C%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Csqrt%7Bx%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Calpha%20%5Cbeta%20x_%7B123%7D%20%5C%5C%20x%5E%7B2%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D)
Answer:
f average = 1
smaller value c = 3
larger value c = 5
Step-by-step explanation:
Answer:
Um so idk the process but yes it can be found :)
Step-by-step explanation: