From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
According to Stefan-Boltzmann Law, the thermal energy radiated by a radiator per second per unit area is proportional to the fourth power of the absolute temperature. It is given by;
P/A = σ T⁴ j/m²s
Where; P is the power, A is the area in square Meters, T is temperature in kelvin and σ is the Stefan-Boltzmann constant, ( 5.67 × 10^-8 watt/m²K⁴)
Therefore;
Power/square meter = (5.67 × 10^-8) × (3000)⁴
= 4.59 × 10^6 Watts/square meter
B.
carbon dioxide molecules have more energy; therefore, the kinetic energy increases
The elastic potential energy stored in a spring is given by:

where k is the spring constant, and x=0.5 is the compression of the spring. Re-arranging the formula and using E=5 J, we find the spring constant:
