Answer:
2.5
Step-by-step explanation:
This is a geometric sequence that increases by 2.5x.
120 x 2.5 = 300
300 x 2.5 = 750
Hope this helps!
<em>Here's</em><em> </em><em>my</em><em> </em><em>working</em><em> </em><em>for</em><em> </em><em>1</em><em>)</em><em> </em><em>You</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>exterior</em><em> </em><em>angle</em><em>,</em><em> </em><em>then</em><em> </em><em>divide</em><em> </em><em>by</em><em> </em><em>360</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>sides</em><em>:</em>
<em>Applying</em><em> </em><em>these</em><em> </em><em>steps</em><em> </em><em>:</em><em> </em>
180 (Interior Angles) - 162 = 18 (Exterior angle)
360 ÷ 18 is<em> </em><em>20</em><em> </em><em>sides</em><em> </em>
<em>For</em><em> </em><em>2</em><em>)</em>
<em>Its</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>method</em><em>,</em><em> </em><em>so</em><em> </em><em>apply</em><em> </em><em>the</em><em> </em><em>steps</em><em>:</em>
<em>180</em><em> </em><em>-</em><em> </em><em>175</em><em> </em><em>=</em><em> </em><em>5</em>
<em>360</em><em> </em><em>÷</em><em> </em><em>5</em><em> </em><em>=</em><em> </em><em>72</em><em> </em><em>sides</em><em> </em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em><em> </em><em>:</em><em>)</em><em> </em>
It is not differentiable at x=1 since the slope of the tangent line as x -> 1 from the right is 1 while the slope of the tangent line as x->1 from the left is -1
Answer:
Step-by-step explanation:
The formula for <u>exponential growth</u> is y = ab^x.
To write this equation, we know it has to start with 48 (which is the variable a). We need to add the rate of growth. This is 11/6 (which is variable b). But we also need to account for the "every 3.5 years" part, so divide the x as an exponent by 3.5.
N(t) = 48 * 11/6^(t/3.5)
This equation is easy to test, and it's a good idea to test it after you write it. For example, after 3.5 years we know that it should have 48*11/6 branches. Does our equation work? Yes.