Answer:
<u>Passive transport</u>: It does not need any energy to occur. Happens in favor of an electrochemical gradient. Simple diffusion and facilitated diffusion are kinds of passive transport.
<u>Simple diffusion</u>: molecules freely moves through the membrane.
<u>Facilitated diffusion</u>: molecules are carried through the membrane by channel proteins or carrier proteins.
<u>Active transport</u> needs energy, which can be taken from the ATP molecule (<u>Primary active transport</u>) or from a membrane electrical potential (<u>Secondary active transport</u>).
Explanation:
- <u>Diffusion</u>: This is a pathway for some <em>small polar hydrophilic molecules</em> that can<em> freely move through the membrane</em>. Membrane´s permeability <em>depends</em> on the <em>size of the molecule</em>, the bigger the molecule is, the less capacity to cross the membrane it has. Diffusion is a very slow process and to be efficient requires short distances and <em>pronounced concentration gradients</em>. An example of diffusion is <em>osmosis</em> where water is the transported molecule.
- <u>Facilitated diffusion</u>: Refers to the transport of <em>hydrophilic molecules</em> that <em>are not able to freely cross the membrane</em>. <em>Channel protein</em> and many <em>carrier proteins</em> are in charge of this <em>passive transport</em>. If uncharged molecules need to be carried this process depends on <em>concentration gradients</em> and molecules are transported from a higher concentration side to a lower concentration side. If ions need to be transported this process depends on an <em>electrochemical gradient</em>. The <em>glucose</em> is an example of a hydrophilic protein that gets into the cell by facilitated diffusion.
<em>Simple diffusion</em> and <em>facilitated diffusion</em> are <u>passive transport</u> processes because the cell <u><em>does not need any energy</em></u> to make it happen.
- <u>Active transport</u> occurs <em>against the electrochemical gradient</em>, so <u><em>it does need energy to happen</em></u>. Molecules go from a high concentration side to a lower concentration side. This process is always in charge of <em>carrier proteins</em>. In <u>primary active transport</u> the <em>energy</em> needed <em>comes from</em> the <em>ATP</em> molecule. An example of primary active transport is the <em>Na-K bomb</em>. In <u>secondary active transport</u>, the<em> energy comes from</em> the <em>membrane electric potential</em>. Examples of secondary active transport are the carriage of <em>Na, K, Mg metallic ions</em>.
Dissecting microscopes used for the observation of larger objects and u can get a magnification of less than 100x.
<span>Dissecting microscopes are most often used by plant biologists
IM NOT VERY SURE</span>
Amino acids are known to be the building blocks of proteins. Amino acids are organic substances and organic substances contains carbon. Amino acids have an amine group and the carbonyl group (-OH) which contains nitrogen and oxygen respectively. Proteins can also be derived from other sources like meat. Proteins can perform different functions, being an antibody is one.
The offspring inherited the dominant traits from the parent which made it automatically fully dominant. In DNA, dominant alleles mixed with recessive alleles will make 100% dominant offspring. The offspring inherited those chromosomes, which made the white trait not show up.