Answer:
2.99×10²⁵ molecules of CO₂ are produced
Explanation:
Decomposition reaction is:
Ca(HCO₃)₂ => CaO(s) + 2CO₂(g) + H₂O(g)
Ratio is 1:2. Let's make a rule of three:
1 mol of bicarbonate can produce 2 moles of CO₂
Therefore, 24.9 moles of bicarbonate may produce, 49.8 moles (24.9 .2 )/1
Let's determine the number of molecules
1 mol has 6.02×10²³ molecules
49.8 moles must have (49.8 . 6.02×10²³) / 1 = 2.99×10²⁵ molecules
These could all go either way, hardness and other special properties are what I'm guessing would be the most accurate in determining the kind of material.
luster, cleavage, streak, and color can all be affected by other factors. but I guess cleavage would also be accurate. so I guess hardness special properties and cleavage would be the most reliable.
The increase of the boling point of a solution is a colligative property.
The formula for the increase of the normal boiling point of water is:
ΔTb = Kb * m
Where m is the molallity of the solution and Kb is the molal boiling constant in °C/mol.
ΔTb = 0.51 °C / m * 0.100 m = 0.051 °C.
So, the new boiling temperature is Tb = 100°C + 0.051°C = 100.051 °C.
Answer: 100.051 °C
The solubility of NaCl in water will not be affected by an increase in pressure.
We know that the density of NaCl(s) in 2.165 g/cm³ at 25 °C and we want to know how will its solubility in water be affected when the pressure is increased.
<h3>What is solubility?</h3>
Solubility is the maximum mass of a solute that can be dissolved in 100 grams of solvent at a determined temperature.
The solubility of a solid, such as NaCl, in a liquid, is mainly affected by the temperature. However, since solids are not compressible, an increase in pressure will not affect its solubility.
On the other hand, the solubility of gases in water will increase with an increase in pressure, as stated by Henry's law.
The solubility of NaCl in water will not be affected by an increase in pressure.
Learn more about solubility here: brainly.com/question/11963573