Answer:
Ksp = [ Cu+² ] [ OH-] ²
molar mass Cu(oH )2 ==> M= 63.546 (1) + 16 (2) + 1 (2) = 97.546 g/mol
Ksp = [ Cu+² ] [ OH-] ²
Ksp [ cu (OH)2 ] = 2.2 × 10-²⁰
|__________|___<u>Cu</u><u>+</u><u>²</u><u> </u>__|_<u>2</u><u>OH</u><u>-</u>____|
|<u>Initial concentration(M</u>)|___<u>0</u>__|_<u>0</u>______|
<u>|Change in concentration(M)</u>|_<u>+S</u><u> </u>|__<u>+2S</u>__|
|<u>Equilibrium concentration(M)|</u><u>_S</u><u> </u><u>_</u><u>|</u><u>2S___</u><u>|</u>
Ksp = [ Cu+² ] [ OH-] ²
2.2 ×10-²⁰ = (S)(2S)²= 4S³
![s = \sqrt[3]{ \frac{2.2 \times {10}^{ - 20} }{4} } = 1.8 \times {10}^{ - 7}](https://tex.z-dn.net/?f=s%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B2.2%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2020%7D%20%7D%7B4%7D%20%7D%20%20%3D%201.8%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%207%7D%20)
S = 1.8 × 10-⁷ M
The molar solubility of Cu(OH)2 is 1.8 × 10-⁷ M
Solubility of Cu (OH)2 =

<h3>
Solubility of Cu (OH)2 = 1.75428 × 10 -⁵ g/ L</h3>
I hope I helped you^_^
Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.
Your answer is 4 protons 4 electrons and 5 neutrons
Answer:
11.6g of NH₃(g) have to react
Explanation:
For the reaction:
4 NH₃(g) + 5 O₂(g) → 4 NO(g) + 6 H₂O(g) ΔH = -905kJ
<em>4 moles of ammonia produce 905kJ</em>
Thus, if you want to produce 154kJ of energy you need:
154kJ × (4 mol NH₃ / 905kJ) = <em>0.681moles of NH₃. </em>In mass -Molar mass ammonia is 17.031g/mol-
0.681mol NH₃ × (17.031g / mol) = <em>11.6g of NH₃(g) have to react</em>