To solve this problem it is necessary to apply the definition given in Faraday's law in a solenoid for which it is noted that
Where,
N = Number of loops
A = Cross sectional Area
B = Magnetic Field
Therefore the correct answer is A.
Answer:
You would have to find the friction force of the rubber block which would be found with the equation of Normal force (mass*gravity) times cooeficient of friction which would give 8.82 N for the amount of friction and because you need more force than 8.82 N (assuming gravity is 9.8)
Answer:
v = 21.25 km/h
The average velocity is 21.25km/h
Explanation:
Average velocity = total displacement/time taken
v = d/t
Given;
A car travels 50 km in 25 km /h
d1 = 50km
v1 = 25km/h
time taken = distance/velocity
t1 = d1/v1
t1 = 50/25 = 2 hours
and then travels 60km with a velocity 20 km/h
d2 = 60km
v2 = 20km/h
t2 = d2/v2 = 60/20
t2 = 3 hours
and then travels 60km with a velocity 20 km/h in the same direction
d3 = 60km
v3 = 20km/h
t3 = d3/v3 = 60/20
t3 = 3 hours
Average velocity = total displacement/total time taken
v = (d1+d2+d3)/(t1+t2+t3)
v = (50+60+60)/(2+3+3)
v = 170/8
v = 21.25 km/h
The average velocity is 21.25km/h
Total internal reflection. Although I'm not 100%