Answer:
The magnitude of the second charge is
or 
Explanation:
The work done in bringing a charged particle from one point to another in the presence of some electric field is equal to the change in the electric potential energy of the charge in moving from one point to another.
The electric potential energy of some charge
at a point in the electric field of another charge
is given by the product of the amount of charge
and electric potential at that point due to the charge
.

The electric potential at that point is given by

where
is the Coulomb's constant.
Therefore,

Now, We have given two charges
and
, whose value is to be found.
When the two charges are infinitely dar apart, the electric potential energy of the system is given by

When the coordinates of position of the two charges are

The distance between the two charges is given by

The electric potential energy of the charges in this configuration is given by

The change in the electric potential energy of the system is equal to the work done to bring the system from inifinitely far apart position to given configuration.
Therefore,

<span>Usually, If you drop a 200 gram piece of metal with a temperature of 110 degrees Celsius into 1000 grams of water at 25° Celsius, the statement which would best describe what would occur is the last one : </span><span>The water and the metal's temperatures will reach the same temperature. I choose this one because this is a nice example of how the nature tries to reach the balance. Hope it helps! Regards.</span>
Answer:
option B
−1.92 m/s2
Explanation:
Given in the question,
time took by truck to slow down = 3.56 sec
initial speed of truck = 112 km/h
final speed of truck = 87.4 km/h
1 km/h = 0.277778 m/s
112 = 31.1 m/s
87.4 = 24.28 m/s
Formula use to calculate the acceleration
v - u = at
where v is final speed
u is initial speed
a is acceleration
t is time
plug values in the equation
24.28 - 31.1 = a(3.56)
-6.8 = a(3.56)
a = -6.8 / 3.56
a = -1.9 m/s²
The answer is false because the laser doest burn the images onto the paper.