1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleksandr-060686 [28]
3 years ago
12

Why is the picture above not an accurate representation of charges and their field lines?

Physics
2 answers:
pochemuha3 years ago
7 0
Because field lines don’t all go in to the pole. The bottom half go outwards not inwards.
Liula [17]3 years ago
3 0

Answer:

C, There should be more field lines around +2Q than the -Q

Explanation:

just did the test its correct x

You might be interested in
Sound waves that enter the external acoustic meatus eventually encounter the __________, which then vibrates at the same frequen
7nadin3 [17]

Answer:

tympanic membrane (eardrum)

Explanation:

The sound waves spread through the air and reach the outer ear, into which they penetrate through the ear canal. In doing so, they stimulate the eardrum, which closes the inner end of the duct. By vibrating this membrane, the vibration of a chain of ossicles located in the middle ear is induced. These ossicles transmit their vibration to the oval window, which is a membranous structure that communicates the middle ear with the cochlea of ​​the inner ear. When the oval membrane moves, it moves the liquid (perilymph) that fills one of the three cavities of the cochlea generating waves in it. These waves mechanically stimulate the sensory cells (hair cells) located in the organ of Corti, within the cochlea in the central cavity, the middle ramp. This cavity is filled with a liquid rich in K +, endolymph. The cells embedded in the endolymph, change their permeability to K + due to the movement of the cilia and respond by releasing a neurotransmitter that excites the nerve terminals, which initiate the auditory sensory pathway.

3 0
3 years ago
The stopwatch used by a student to measure velocity of a pulse in a slinky was of least count 0.1 second. He stops the stopwatch
sweet-ann [11.9K]

Least count of the pulse stopwatch is given by

\Delta t = 0.1 s

this means each division of the stopwatch will measure 0.1 s of time

After 3 journeys from one end to other we can see that total time that is measured here is shown by the clock as 52nd division

So here total time is given as

Time = (Number of division) (Least count)

now we will have

T = 52 \times 0.1s

T = 5.2 s

4 0
3 years ago
A 2.93 kg particle has a velocity of (2.98 i hat - 3.98 j) m/s.
cupoosta [38]

Answer:

a) The x and y components of the momentum are 8.731\,\frac{kg\cdot m}{s} and -11.661\,\frac{kg\cdot m}{s}, respectively.

b) The magnitude and direction of its momentum are approximately 14.567 kilogram-meters per second and 306.823º.

Explanation:

a) The vectorial equation of momentum is represented by the following expression:

\vec p = m\cdot \vec v (1)

Where:

\vec p - Vector momentum, measured in kilogram-meters per second.

m - Mass of the particle, measured in kilograms.

\vec v - Vector velocity, measured in meters per second.

If we know that m = 2.93\,kg and \vec v = 2.98\,\hat{i}-3.98\,\hat{j}\,\,\,\left[\frac{m}{s} \right], then the momentum is:

\vec p = (2.93)\cdot (2.98\,\hat{i}-3.98\,\hat{j})\,\,\,\left[\frac{kg\cdot m}{s} \right]

\vec p = 8.731\,\hat{i}-11.661\,\hat{j}\,\,\,\left[\frac{kg\cdot m}{s} \right]

The x and y components of the momentum are 8.731\,\frac{kg\cdot m}{s} and -11.661\,\frac{kg\cdot m}{s}, respectively.

b) The magnitude and direction of momentum are represented by the following expressions:

\|\vec p \| = \sqrt{p_{x}^{2}+p_{y}^{2}} (2)

\theta = \tan^{-1}\left(\frac{p_{y}}{p_{x}} \right) (3)

Where:

\|\vec p\| - Magnitude of momentum, measured in kilogram-meters per second.

\theta - Direction of momentum, measured in sexagesimal degrees.

If we know that p_{x} = 8.731\,\frac{kg\cdot m}{s} and p_{y} = -11.661\,\frac{kg\cdot m}{s}, then the magnitude and direction of momentum are, respectively:

\|\vec p\| = \sqrt{\left(8.731\,\frac{kg\cdot m}{s} \right)^{2}+\left(-11.661\,\frac{kg\cdot m}{s} \right)^{2}}

\|\vec p\| \approx 14.567\,\frac{kg\cdot m}{s}

\theta =\tan^{-1}\left(\frac{-11.661\,\frac{kg\cdot m}{s} }{8.731\,\frac{kg\cdot m}{s} } \right)

\theta \approx 306.823^{\circ}

The magnitude and direction of its momentum are approximately 14.567 kilogram-meters per second and 306.823º.

6 0
3 years ago
You are performing a knee extension exercise. You hold a 20kg weight at full knee extension. The weight is 0.4m from your knee j
dmitriy555 [2]

Answer:

The moment is -78.4 N-m (clockwise).

Explanation:

Given:

Mass of the object (m) = 20 kg

Distance of the object from the knee joint (d) = 0.4 m

Weight of leg is not considered.

Acceleration due to gravity (g) = 9.8 m/s²

Now, weight of the object is equal to the product of its mass and acceleration due to gravity. So,

Weight = Mass × Acceleration due to gravity

            = mg=20\times 9.8 =196\ N

We know that, moment of a force about a point is defined as the product of force applied and the perpendicular distance between the point and the line of application of force.

Moment of the given weight about the knee joint is given as:

Moment about knee joint = Weight × Distance from knee joint to weight

Moment about knee joint = 196 × 0.4 = 78.4 Nm

Now, from the diagram below, we can observe that, the weight acts vertically down and thus the sense of rotation about the knee joint at point O is clockwise. So, moment is negative.

Therefore, the moment is -78.4 N-m (clockwise).

7 0
3 years ago
Describe a situation in your everyday life where you could use the scientific method. List all the steps of the scientific metho
emmainna [20.7K]

Yes, scientific method can be applied on many everyday activities to get a reasonable solution. Infact normally we are applying this method without having it in our knowledge that we are applying it.

For example: In morning we are going to office and we start the car, but it is not started.You turn the engine again and again but it simply donot works.

Observation (the state of defining a problem):

The car is not started

Hypothesis (A possible solution based on the information we already know):

The car is not started because it might be out of gas or there can be some other technical fault.  

Experiment (testing of hypothesis by applying different methods of solving problem):

You get the fuel and put it inside the car but it still donot works and car didnot start. Experiment didnot get solution.

Analyze the results of data and test another hypothesis

You call a technician and he check with the car engine tries and finds out that the engine was out of order and needs repairing.

Draw conclusion:

The engine do not works when it is out of order and it is a cause of a car not being started.

<em>Now the theory and law making part can not be applied on this case but it is a part of scientific method.</em>

Hope it helps!

8 0
4 years ago
Other questions:
  • A model rocket is launched at an angle of 70° above the x axis, with an initial velocity of 40 m/s. How high will the rocket be
    11·2 answers
  • Convergent faults ___.
    12·2 answers
  • Please send help my way. 10 points to the brainliest
    5·1 answer
  • What is one common electrostatic phenomenon​
    15·1 answer
  • Two equal-mass stars maintain a constant distance apart of 8.0 x 1010 m and rotate about a point midway between them at a rate o
    15·1 answer
  • What is the energy per photon absorbed during the transition from n = 2 to n = 3 in the hydrogen atom?
    15·1 answer
  • When does a circuit is said to be over loaded?​
    5·2 answers
  • What is grandfather Paradox?
    14·1 answer
  • A big lump of meat of mass 5Kg is hung from a spring balance in an elevator. Find the reading of the balance of (I) the elevator
    11·1 answer
  • I need help with problem C, finding the area of the accel. v time graph
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!