Answer:
It will take time=7.963 hours to completely discharge
Explanation:
The energy available in the battery is:
Energy stored=Power×Time
Energy stored=(ΔV)I×t
Energy stored=(12.0V×43.0A.h)
Energy stored=516 W.h
The two headlights together consume a total power of:

So the time required to completely discharge is:

It will take time=7.963 hours to completely discharge
B. In the system of the object and the earth, by Newton's third law, the object will exert and equal and opposite force upon the earth.
Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.
Question: In which situation would a space probe most likely experience centripetal acceleration?
as it revolves around a planet
as it flies straight past a moon
as it is pulled in a line toward the Sun
as it lifts off from Earth
Answer:
When "space probe revolves around a planet" most likely to experience centripetal acceleration
Explanation:
Centripetal acceleration defined as the rate in change of tangential velocity. Also, as per Newton's second law, any kind of force will be directly proportional to the acceleration attained by the object. So, for centripetal acceleration, the force will be the centripetal force. The centripetal force will be acting on an object rotating in a circular motion with its direction of force towards the center. Thus, centripetal acceleration will be experienced by an object or a space probe when it is in a circular motion. It means the space probe is revolving around a planet.
Answer:
Two of Einstein’s influential ideas introduced in 1905 were the theory of special relativity and the concept of a light quantum, which we now call a photon. Beyond 1905, Einstein went further to suggest that freely propagating electromagnetic waves consisted of photons that are particles of light in the same sense that electrons or other massive particles are particles of matter. A beam of monochromatic light of wavelength \lambda (or equivalently, of frequency f) can be seen either as a classical wave or as a collection of photons that travel in a vacuum with one speed, c (the speed of light), and all carrying the same energy, {E}_{f}=hf. This idea proved useful for explaining the interactions of light with particles of matter.