A yo-yo swung in a circle.
Answer: The gravitational force Fg exerted on the orbit by the planet is Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Explanation:
Gravitational Force Fg = GMm/r2----1
Where G is gravitational constant
M Mass of the planet, m mass of the orbit and r is the distance between the masses.
Since the circular orbit move around the planet, it means they do not touch each other.
The distance between two points on the circumference of the two massesb is given by d, while the distance from the radius of each mass to the circumferences are R1 and R2 from the question.
Total distance r= (R1 + d + R2)^2---2
Recall, density rho =
Mass M/Volume V
Hence, mass of planet = rho × V
But volume of a sphere is 4/3πr3
Therefore,
Mass M of planet = rho × 4/3πr3
=4/3πr3rho in kg
From equation 1 and 2
Fg = G 4/3πr3rhom/ (R1 + d+ R2)^2
Quasar is famous for being an intergalactic object which is billions of years away from the earth yet can still be seen, unlike the other star body, unlike giant galaxies.
Hence, the fact that quasars can be detected from distances where even the biggest and most luminous galaxies cannot be seen means that "they must be intrinsically far more luminous than the brightest galaxies."
This condition, including other related evidence gotten in recent years concerning our galaxy, has shown that quasars are probably the central nuclei of very distant, very active galaxies.
The surprising thing was that quasars and active galaxies have a lot of mass in the center of the very small volume of the space.
Therefore, the surprising thing about quasars was that due to this mass and energy they are 100 times more luminous than Milky Way which means they have high recession velocity and a very large amount of red-shifting.
To learn more about quasars, refer: brainly.com/question/9965257
#SPJ4
Answer:
henry moseley was an english physicist, whose contribution to the science of physics was the justification from physical laws of the previous chemical concept of the atomic number. one of his developments were of moseley's law in x-ray spectra.
Explanation:
Answer:
a.After
second Mr Comer's speed

b.Distance travelled by Mr.Comer in
seconds

Explanation:
a. Lets recall our first equation of motion 
Now we know that
,
and

Plugging the values we have.




Then Mr.Comer's speed after
sec

b.
Lets find the distance and recall our third equation of motion.

So
distance covered.
Dividing both sides with 2a we have.

Plugging the values.


So Mr.Comer will travel a distance of
.