Answer:
the correct one is b
the difference between the final moment and the initial moment
Explanation:
The momentum is related to the moment
I = ΔP
∫ F dt = p_f - p₀
where p_f and p₀ are the final and initial moments, respectively
When checking the different answers, the correct one is b
the difference between the final moment and the initial moment
Answer:


Explanation:
<u><em>Finding the net force:</em></u>
<u><em>Firstly , we'll find force of Friction:</em></u>

Where
is the coefficient of friction and m = 13.6 kg


<u><em>Now, Finding the net force:</em></u>


<u><em>Finding Acceleration:</em></u>



Answer:
Diffusion requires energy only to move material through the cell membrane.
Explanation:
:)
Answer:
Option B. 3.0×10¯¹¹ F.
Explanation:
The following data were obtained from the question:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
The capacitance, C of a capacitor is simply defined as the ratio of charge, Q on either plates to the potential difference, V between them. Mathematically, it is expressed as:
Capacitance (C) = Charge (Q) / Potential difference (V)
C = Q/V
With the above formula, we can obtain the capacitance of the parallel plate capacitor as follow:
Potential difference (V) = 100 V.
Charge (Q) = 3.0×10¯⁹ C.
Capacitance (C) =..?
C = Q/V
C = 3.0×10¯⁹ / 100
C = 3.0×10¯¹¹ F.
Therefore, the capacitance of the parallel plate capacitor is 3.0×10¯¹¹ F.