1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
10

When divided by △t, (vf - vi) is used to determine which characteristic? A.Speed B.Direction C. Displacement D.Acceleration

Physics
1 answer:
Keith_Richards [23]3 years ago
6 0

Answer:

D.Acceleration

Explanation:

The acceleration of an object is defined as:

a=\frac{v_f -v_i}{\Delta t}

where

vf is the final velocity of the object

vi is the initial velocity of the object

\Delta t is the time taken for the change in velocity to occur

Therefore, from the formula, we see that if we divide (vf - vi)  by △t, we get the acceleration.

You might be interested in
What is the internal energy of 2.00 mol of diatomic hydrogen gas (H2) at 35°C?
djyliett [7]
As you mentioned, we will use <span>Equipartition Theorem.
</span><span>H2 has 5 degrees of freedom; 3 translations and 2 rotation
</span>Therefore:
Internal energy = (5/2) nRT
You just substitute in the equation with the values of R and T and calculate the internal energy as follows:
Internal energy = (5/2) x 2 x <span>8.314 x 308 = 32.0089 x 10^3 J</span>
4 0
3 years ago
2. A person applies a force of 66 N to a fridge as they push it across the length of a standard tennis court. So far today, the
Lubov Fominskaja [6]

Answer:

P=39.2205\, watt

E=374.948 \,cal

Explanation:

Given that:

  • force applied, F=66\,N
  • displacement, s=23.77\,m (length of a tennis court)
  • time taken for pushing, t = 40 s

Since, work is given by:

W=F.s

W=66\times 23.77

W=1568.82\,J

Now, power is given as:

P=\frac{W}{t}

P=\frac{1568.82}{40}

P=39.2205 \,watt

Calories consumed is:

E= 1568.82\times 0.239

E=374.948\, cal

3 0
4 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
When describing electromagnetic radiation, there is a(n) _____________ relationship between wavelength and frequency and the gre
disa [49]

Its actually C. I did the question on USA test prep and it said the correct answer was C.


6 0
3 years ago
Read 2 more answers
A vector has an x-component
9966 [12]

Explanation:

The magnitude of a vector v can be found using Pythagorean's theorem.

||v|| = √(vₓ² + vᵧ²)

||v|| = √((-309)² + (187)²)

||v|| ≈ 361

You can find the angle of a vector using trigonometry.

tan θ = vᵧ / vₓ

tan θ = 187 / -309

θ ≈ 149° or θ ≈ 329°

vₓ is negative and vᵧ is positive, so θ must be in the second quadrant.  Therefore, θ ≈ 149°.

4 0
3 years ago
Other questions:
  • The solid block shown here has a mass of 146 grams. What is the block’s density?
    9·1 answer
  • A robot probe drops a camera off the rim of a 278 m high cliff on Mars, where the free-fall acceleration is 3.7 m/s2 . Find the
    9·1 answer
  • A beetle with a mass of 15.0 g is initially at rest on the outer edge of a horizontal turntable that is also initially at rest.
    6·1 answer
  • a car has a velocity of 10ms-1. it accelerates at 0.2 ms-2 for half minute find the total distance travelled and final velocity
    8·1 answer
  • What happens when all the external forces on a system are balanced ?
    8·1 answer
  • Assume you are in the car and the car is moving at a certain speed to
    12·1 answer
  • Convert time from 12-hour to 24-hour clock. ​
    15·1 answer
  • There is gravitational force on the Earth from the Sun, and a gravitational force on the Sun from the Earth. Which pulls harder?
    9·1 answer
  • Name the group of galaxies of which the Milky Way is a member?
    11·2 answers
  • A dockworker applies a constant horizontal force of 80.0 N to a block of ice on a smooth horizontal floor. The frictional force
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!