To solve this problem it is necessary to apply the concepts related to inductance on an inductor, which is mathematically described as:
![L = \mu_0 n^2 A l](https://tex.z-dn.net/?f=L%20%3D%20%5Cmu_0%20n%5E2%20A%20l)
Where,
= Permeability constant (Described as 'n' at the problem equation)
l = Length
A = Cross-sectional Area
n = No of turn per unit length
The number of turns N is given by
![N = \frac{l}{2a}](https://tex.z-dn.net/?f=N%20%3D%20%5Cfrac%7Bl%7D%7B2a%7D)
The number of turns per unit length n is
![n = \frac{N}{l} = \frac{1}{2a}](https://tex.z-dn.net/?f=n%20%3D%20%5Cfrac%7BN%7D%7Bl%7D%20%3D%20%5Cfrac%7B1%7D%7B2a%7D)
The relationship of the cable lengths starts from assuming that the length 'a' is less than the length 'r', and therefore the length of the wire d would be related by:
![d = N(2\pi r)](https://tex.z-dn.net/?f=d%20%3D%20N%282%5Cpi%20r%29)
![d = \frac{l}{2a}2\pi r](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7Bl%7D%7B2a%7D2%5Cpi%20r)
![d = \frac{\pi r}{a}l](https://tex.z-dn.net/?f=d%20%3D%20%5Cfrac%7B%5Cpi%20r%7D%7Ba%7Dl)
Solving to obtain l,
![l = \frac{ad}{\pi r}](https://tex.z-dn.net/?f=l%20%3D%20%5Cfrac%7Bad%7D%7B%5Cpi%20r%7D)
Substituting at the first equation,
![L = \mu_0 n^2 A l](https://tex.z-dn.net/?f=L%20%3D%20%5Cmu_0%20n%5E2%20A%20l)
![L = \mu_0 (\frac{1}{2a})^2(\pi r^2)(\frac{ad}{\pi r})](https://tex.z-dn.net/?f=L%20%3D%20%5Cmu_0%20%28%5Cfrac%7B1%7D%7B2a%7D%29%5E2%28%5Cpi%20r%5E2%29%28%5Cfrac%7Bad%7D%7B%5Cpi%20r%7D%29)
![L = \mu_0 (\frac{rd}{4a})](https://tex.z-dn.net/?f=L%20%3D%20%5Cmu_0%20%28%5Cfrac%7Brd%7D%7B4a%7D%29)